File size: 6,477 Bytes
38dbec8 64fccd8 38dbec8 64fccd8 38dbec8 4d8c3d6 38dbec8 4d8c3d6 38dbec8 4d8c3d6 38dbec8 4d8c3d6 38dbec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import argparse
import os
from contextlib import nullcontext
import torch
from PIL import Image
from tqdm import tqdm
from transparent_background import Remover
from spar3d.models.mesh import QUAD_REMESH_AVAILABLE, TRIANGLE_REMESH_AVAILABLE
from spar3d.system import SPAR3D
from spar3d.utils import foreground_crop, get_device, remove_background
def check_positive(value):
ivalue = int(value)
if ivalue <= 0:
raise argparse.ArgumentTypeError("%s is an invalid positive int value" % value)
return ivalue
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"image", type=str, nargs="+", help="Path to input image(s) or folder."
)
parser.add_argument(
"--device",
default=get_device(),
type=str,
help=f"Device to use. If no CUDA/MPS-compatible device is found, the baking will fail. Default: '{get_device()}'",
)
parser.add_argument(
"--pretrained-model",
default="stabilityai/stable-point-aware-3d",
type=str,
help="Path to the pretrained model. Could be either a huggingface model id is or a local path. Default: 'stabilityai/stable-point-aware-3d'",
)
parser.add_argument(
"--foreground-ratio",
default=1.3,
type=float,
help="Ratio of the foreground size to the image size. Only used when --no-remove-bg is not specified. Default: 0.85",
)
parser.add_argument(
"--output-dir",
default="output/",
type=str,
help="Output directory to save the results. Default: 'output/'",
)
parser.add_argument(
"--texture-resolution",
default=1024,
type=int,
help="Texture atlas resolution. Default: 1024",
)
parser.add_argument(
"--low-vram-mode",
action="store_true",
help=(
"Use low VRAM mode. SPAR3D consumes 10.5GB of VRAM by default. "
"This mode will reduce the VRAM consumption to roughly 7GB but in exchange "
"the model will be slower. Default: False"
),
)
remesh_choices = ["none"]
if TRIANGLE_REMESH_AVAILABLE:
remesh_choices.append("triangle")
if QUAD_REMESH_AVAILABLE:
remesh_choices.append("quad")
parser.add_argument(
"--remesh_option",
choices=remesh_choices,
default="none",
help="Remeshing option",
)
if TRIANGLE_REMESH_AVAILABLE or QUAD_REMESH_AVAILABLE:
parser.add_argument(
"--reduction_count_type",
choices=["keep", "vertex", "faces"],
default="keep",
help="Vertex count type",
)
parser.add_argument(
"--target_count",
type=check_positive,
help="Selected target count.",
default=2000,
)
parser.add_argument(
"--batch_size", default=1, type=int, help="Batch size for inference"
)
args = parser.parse_args()
# Ensure args.device contains cuda
devices = ["cuda", "mps", "cpu"]
if not any(args.device in device for device in devices):
raise ValueError("Invalid device. Use cuda, mps or cpu")
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
device = args.device
if not (torch.cuda.is_available() or torch.backends.mps.is_available()):
device = "cpu"
print("Device used: ", device)
model = SPAR3D.from_pretrained(
args.pretrained_model,
config_name="config.yaml",
weight_name="model.safetensors",
low_vram_mode=args.low_vram_mode,
)
model.to(device)
model.eval()
bg_remover = Remover(device=device)
images = []
idx = 0
for image_path in args.image:
def handle_image(image_path, idx):
image = remove_background(
Image.open(image_path).convert("RGBA"), bg_remover
)
image = foreground_crop(image, args.foreground_ratio)
os.makedirs(os.path.join(output_dir, str(idx)), exist_ok=True)
image.save(os.path.join(output_dir, str(idx), "input.png"))
images.append(image)
if os.path.isdir(image_path):
image_paths = [
os.path.join(image_path, f)
for f in os.listdir(image_path)
if f.endswith((".png", ".jpg", ".jpeg"))
]
for image_path in image_paths:
handle_image(image_path, idx)
idx += 1
else:
handle_image(image_path, idx)
idx += 1
vertex_count = (
-1
if args.reduction_count_type == "keep"
else (
args.target_count
if args.reduction_count_type == "vertex"
else args.target_count // 2
)
)
for i in tqdm(range(0, len(images), args.batch_size)):
image = images[i : i + args.batch_size]
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
with torch.no_grad():
with (
torch.autocast(device_type=device, dtype=torch.bfloat16)
if "cuda" in device
else nullcontext()
):
mesh, glob_dict = model.run_image(
image,
bake_resolution=args.texture_resolution,
remesh=args.remesh_option,
vertex_count=vertex_count,
return_points=True,
)
if torch.cuda.is_available():
print("Peak Memory:", torch.cuda.max_memory_allocated() / 1024 / 1024, "MB")
elif torch.backends.mps.is_available():
print(
"Peak Memory:", torch.mps.driver_allocated_memory() / 1024 / 1024, "MB"
)
if len(image) == 1:
out_mesh_path = os.path.join(output_dir, str(i), "mesh.glb")
mesh.export(out_mesh_path, include_normals=True)
out_points_path = os.path.join(output_dir, str(i), "points.ply")
glob_dict["point_clouds"][0].export(out_points_path)
else:
for j in range(len(mesh)):
out_mesh_path = os.path.join(output_dir, str(i + j), "mesh.glb")
mesh[j].export(out_mesh_path, include_normals=True)
out_points_path = os.path.join(output_dir, str(i + j), "points.ply")
glob_dict["point_clouds"][j].export(out_points_path)
|