Spaces:
Sleeping
Sleeping
File size: 20,126 Bytes
1b167bf 0d42823 1b167bf 951c395 1b167bf 951c395 ab6abb0 1b167bf 951c395 c59e337 951c395 7cdb936 951c395 d8c6271 d283cbc d8c6271 951c395 7cdb936 951c395 c59e337 951c395 7cdb936 d8c6271 951c395 d8c6271 7cdb936 ab6abb0 7cdb936 951c395 d8c6271 951c395 c59e337 951c395 c59e337 951c395 1b167bf 7cdb936 951c395 c59e337 d283cbc 7cdb936 c59e337 1b167bf 951c395 9b37297 951c395 7cdb936 c59e337 ab6abb0 7cdb936 ab6abb0 c59e337 7cdb936 ab6abb0 c59e337 951c395 7cdb936 951c395 ab6abb0 1b167bf c59e337 1b167bf 951c395 9b37297 1b167bf 9b37297 1b167bf 9b37297 1b167bf ab6abb0 1b167bf 9b37297 1b167bf ab6abb0 1b167bf 9b37297 1b167bf 9b37297 1b167bf c59e337 1b167bf 951c395 9b37297 1b167bf 9b37297 1b167bf 9b37297 1b167bf 9b37297 1b167bf 9b37297 1b167bf 9b37297 1b167bf ab6abb0 1b167bf c59e337 1b167bf ab6abb0 1b167bf 9b37297 ab6abb0 951c395 ab6abb0 9b37297 1b167bf ab6abb0 1b167bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
import spaces
import gradio as gr
import logging
import os
import tempfile
import pandas as pd
import requests
from bs4 import BeautifulSoup
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import whisper
from moviepy.editor import VideoFileClip
from pydub import AudioSegment
import fitz
import docx
import yt_dlp
from functools import lru_cache
import gc
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class ModelManager:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(ModelManager, cls).__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if not self._initialized:
self.tokenizer = None
self.model = None
self.news_generator = None
self.whisper_model = None
self._initialized = True
@spaces.GPU(duration=120)
def initialize_models(self):
"""Initialize models with ZeroGPU compatible settings"""
try:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
if not HUGGINGFACE_TOKEN:
raise ValueError("HUGGINGFACE_TOKEN environment variable not set")
logger.info("Starting model initialization...")
model_name = "meta-llama/Llama-2-7b-chat-hf"
# Load tokenizer
logger.info("Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
model_name,
token=HUGGINGFACE_TOKEN,
use_fast=True,
model_max_length=512
)
self.tokenizer.pad_token = self.tokenizer.eos_token
# Initialize model with ZeroGPU compatible settings
logger.info("Loading model...")
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
token=HUGGINGFACE_TOKEN,
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
use_safetensors=True,
# ZeroGPU specific settings
max_memory={0: "6GB"},
offload_folder="offload",
offload_state_dict=True
)
# Create pipeline with minimal settings
logger.info("Creating pipeline...")
from transformers import pipeline
self.news_generator = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device_map="auto",
torch_dtype=torch.float16,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.2,
num_return_sequences=1,
early_stopping=True
)
# Load Whisper model with minimal settings
logger.info("Loading Whisper model...")
self.whisper_model = whisper.load_model(
"tiny",
device="cuda" if torch.cuda.is_available() else "cpu",
download_root="/tmp/whisper"
)
logger.info("All models initialized successfully")
return True
except Exception as e:
logger.error(f"Error during model initialization: {str(e)}")
self.reset_models()
raise
def reset_models(self):
"""Reset all models and clear memory"""
try:
if hasattr(self, 'model') and self.model is not None:
self.model.cpu()
del self.model
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
del self.tokenizer
if hasattr(self, 'news_generator') and self.news_generator is not None:
del self.news_generator
if hasattr(self, 'whisper_model') and self.whisper_model is not None:
if hasattr(self.whisper_model, 'cpu'):
self.whisper_model.cpu()
del self.whisper_model
self.tokenizer = None
self.model = None
self.news_generator = None
self.whisper_model = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
import gc
gc.collect()
except Exception as e:
logger.error(f"Error during model reset: {str(e)}")
def check_models_initialized(self):
"""Check if all models are properly initialized"""
if None in (self.tokenizer, self.model, self.news_generator, self.whisper_model):
logger.warning("Models not initialized, attempting to initialize...")
self.initialize_models()
def get_models(self):
"""Get initialized models, initializing if necessary"""
self.check_models_initialized()
return self.tokenizer, self.model, self.news_generator, self.whisper_model
# Create global model manager instance
model_manager = ModelManager()
@lru_cache(maxsize=32)
def download_social_media_video(url):
"""Download a video from social media."""
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(id)s.%(ext)s',
}
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
audio_file = f"{info_dict['id']}.mp3"
logger.info(f"Video downloaded successfully: {audio_file}")
return audio_file
except Exception as e:
logger.error(f"Error downloading video: {str(e)}")
raise
def convert_video_to_audio(video_file):
"""Convert a video file to audio."""
try:
video = VideoFileClip(video_file)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
video.audio.write_audiofile(temp_file.name)
logger.info(f"Video converted to audio: {temp_file.name}")
return temp_file.name
except Exception as e:
logger.error(f"Error converting video: {str(e)}")
raise
def preprocess_audio(audio_file):
"""Preprocess the audio file to improve quality."""
try:
audio = AudioSegment.from_file(audio_file)
audio = audio.apply_gain(-audio.dBFS + (-20))
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
audio.export(temp_file.name, format="mp3")
logger.info(f"Audio preprocessed: {temp_file.name}")
return temp_file.name
except Exception as e:
logger.error(f"Error preprocessing audio: {str(e)}")
raise
@spaces.GPU(duration=120)
def transcribe_audio(file):
"""Transcribe an audio or video file."""
try:
_, _, _, whisper_model = model_manager.get_models()
if isinstance(file, str) and file.startswith('http'):
file_path = download_social_media_video(file)
elif isinstance(file, str) and file.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
file_path = convert_video_to_audio(file)
else:
file_path = preprocess_audio(file)
logger.info(f"Transcribing audio: {file_path}")
if not os.path.exists(file_path):
raise FileNotFoundError(f"Audio file not found: {file_path}")
with torch.inference_mode():
result = whisper_model.transcribe(file_path)
if not result:
raise RuntimeError("Transcription failed to produce results")
transcription = result.get("text", "Error in transcription")
logger.info(f"Transcription completed: {transcription[:50]}...")
return transcription
except Exception as e:
logger.error(f"Error transcribing: {str(e)}")
return f"Error processing the file: {str(e)}"
@lru_cache(maxsize=32)
def read_document(document_path):
"""Read the content of a document."""
try:
if document_path.endswith(".pdf"):
doc = fitz.open(document_path)
return "\n".join([page.get_text() for page in doc])
elif document_path.endswith(".docx"):
doc = docx.Document(document_path)
return "\n".join([paragraph.text for paragraph in doc.paragraphs])
elif document_path.endswith(".xlsx"):
return pd.read_excel(document_path).to_string()
elif document_path.endswith(".csv"):
return pd.read_csv(document_path).to_string()
else:
return "Unsupported file type. Please upload a PDF, DOCX, XLSX or CSV document."
except Exception as e:
logger.error(f"Error reading document: {str(e)}")
return f"Error reading document: {str(e)}"
@lru_cache(maxsize=32)
def read_url(url):
"""Read the content of a URL."""
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
return soup.get_text()
except Exception as e:
logger.error(f"Error reading URL: {str(e)}")
return f"Error reading URL: {str(e)}"
def process_social_content(url):
"""Process social media content."""
try:
text_content = read_url(url)
try:
video_content = transcribe_audio(url)
except Exception as e:
logger.error(f"Error processing video content: {str(e)}")
video_content = None
return {
"text": text_content,
"video": video_content
}
except Exception as e:
logger.error(f"Error processing social content: {str(e)}")
return None
@spaces.GPU(duration=120)
def generate_news(instructions, facts, size, tone, *args):
try:
tokenizer, _, news_generator, _ = model_manager.get_models()
knowledge_base = {
"instructions": instructions,
"facts": facts,
"document_content": [],
"audio_data": [],
"url_content": [],
"social_content": []
}
num_audios = 5 * 3
num_social_urls = 3 * 3
num_urls = 5
audios = args[:num_audios]
social_urls = args[num_audios:num_audios+num_social_urls]
urls = args[num_audios+num_social_urls:num_audios+num_social_urls+num_urls]
documents = args[num_audios+num_social_urls+num_urls:]
for url in urls:
if url:
content = read_url(url)
if content and not content.startswith("Error"):
knowledge_base["url_content"].append(content)
for document in documents:
if document is not None:
content = read_document(document.name)
if content and not content.startswith("Error"):
knowledge_base["document_content"].append(content)
for i in range(0, len(audios), 3):
audio_file, name, position = audios[i:i+3]
if audio_file is not None:
knowledge_base["audio_data"].append({
"audio": audio_file,
"name": name,
"position": position
})
for i in range(0, len(social_urls), 3):
social_url, social_name, social_context = social_urls[i:i+3]
if social_url:
social_content = process_social_content(social_url)
if social_content:
knowledge_base["social_content"].append({
"url": social_url,
"name": social_name,
"context": social_context,
"text": social_content["text"],
"video": social_content["video"]
})
transcriptions_text = ""
raw_transcriptions = ""
for idx, data in enumerate(knowledge_base["audio_data"]):
if data["audio"] is not None:
transcription = transcribe_audio(data["audio"])
if not transcription.startswith("Error"):
transcriptions_text += f'"{transcription}" - {data["name"]}, {data["position"]}\n'
raw_transcriptions += f'[Audio/Video {idx + 1}]: "{transcription}" - {data["name"]}, {data["position"]}\n\n'
for data in knowledge_base["social_content"]:
if data["text"] and not str(data["text"]).startswith("Error"):
transcriptions_text += f'[Social media text]: "{data["text"][:200]}..." - {data["name"]}, {data["context"]}\n'
raw_transcriptions += transcriptions_text + "\n\n"
if data["video"] and not str(data["video"]).startswith("Error"):
video_transcription = f'[Social media video]: "{data["video"]}" - {data["name"]}, {data["context"]}\n'
transcriptions_text += video_transcription
raw_transcriptions += video_transcription + "\n\n"
document_content = "\n\n".join(knowledge_base["document_content"])
url_content = "\n\n".join(knowledge_base["url_content"])
prompt = f"""[INST] You are a professional news writer. Write a news article based on the following information:
Instructions: {knowledge_base["instructions"]}
Facts: {knowledge_base["facts"]}
Additional content from documents: {document_content}
Additional content from URLs: {url_content}
Use these transcriptions as direct and indirect quotes:
{transcriptions_text}
Follow these requirements:
- Write a title
- Write a 15-word hook that complements the title
- Write the body with {size} words
- Use a {tone} tone
- Answer the 5 Ws (Who, What, When, Where, Why) in the first paragraph
- Use at least 80% direct quotes (in quotation marks)
- Use proper journalistic style
- Do not invent information
- Be rigorous with the provided facts [/INST]"""
# Optimize size and max tokens
max_tokens = min(int(size * 1.5), 512)
# Generate article with optimized settings
with torch.inference_mode():
try:
news_article = news_generator(
prompt,
max_new_tokens=max_tokens,
num_return_sequences=1,
do_sample=True,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.2,
early_stopping=True
)
# Process the generated text
if isinstance(news_article, list):
news_article = news_article[0]['generated_text']
news_article = news_article.replace('[INST]', '').replace('[/INST]', '').strip()
except Exception as gen_error:
logger.error(f"Error in text generation: {str(gen_error)}")
raise
return news_article, raw_transcriptions
except Exception as e:
logger.error(f"Error generating news: {str(e)}")
try:
# Attempt to recover by resetting and reinitializing models
model_manager.reset_models()
model_manager.initialize_models()
logger.info("Models reinitialized successfully after error")
except Exception as reinit_error:
logger.error(f"Failed to reinitialize models: {str(reinit_error)}")
return f"Error generating the news article: {str(e)}", ""
def create_demo():
with gr.Blocks() as demo:
gr.Markdown("## Generador de noticias todo en uno")
with gr.Row():
with gr.Column(scale=2):
instrucciones = gr.Textbox(
label="Instrucciones para la noticia",
lines=2
)
hechos = gr.Textbox(
label="Describe los hechos de la noticia",
lines=4
)
tamaño = gr.Number(
label="Tamaño del cuerpo de la noticia (en palabras)",
value=100
)
tono = gr.Dropdown(
label="Tono de la noticia",
choices=["serio", "neutral", "divertido"],
value="neutral"
)
with gr.Column(scale=3):
inputs_list = [instrucciones, hechos, tamaño, tono]
with gr.Tabs():
for i in range(1, 6):
with gr.TabItem(f"Audio/Video {i}"):
file = gr.File(
label=f"Audio/Video {i}",
file_types=["audio", "video"]
)
nombre = gr.Textbox(
label="Nombre",
placeholder="Nombre del entrevistado"
)
cargo = gr.Textbox(
label="Cargo",
placeholder="Cargo o rol"
)
inputs_list.extend([file, nombre, cargo])
for i in range(1, 4):
with gr.TabItem(f"Red Social {i}"):
social_url = gr.Textbox(
label=f"URL de red social {i}",
placeholder="https://..."
)
social_nombre = gr.Textbox(
label=f"Nombre de persona/cuenta {i}"
)
social_contexto = gr.Textbox(
label=f"Contexto del contenido {i}",
lines=2
)
inputs_list.extend([social_url, social_nombre, social_contexto])
for i in range(1, 6):
with gr.TabItem(f"URL {i}"):
url = gr.Textbox(
label=f"URL {i}",
placeholder="https://..."
)
inputs_list.append(url)
for i in range(1, 6):
with gr.TabItem(f"Documento {i}"):
documento = gr.File(
label=f"Documento {i}",
file_types=["pdf", "docx", "xlsx", "csv"],
file_count="single"
)
inputs_list.append(documento)
gr.Markdown("---")
with gr.Row():
transcripciones_output = gr.Textbox(
label="Transcripciones",
lines=10,
show_copy_button=True
)
gr.Markdown("---")
with gr.Row():
generar = gr.Button("Generar borrador")
with gr.Row():
noticia_output = gr.Textbox(
label="Borrador generado",
lines=20,
show_copy_button=True
)
generar.click(
fn=generate_news,
inputs=inputs_list,
outputs=[noticia_output, transcripciones_output]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860
) |