File size: 20,126 Bytes
1b167bf
 
 
 
 
 
 
 
0d42823
1b167bf
 
 
 
951c395
 
1b167bf
951c395
ab6abb0
1b167bf
 
 
 
 
 
 
 
951c395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c59e337
951c395
7cdb936
951c395
d8c6271
d283cbc
d8c6271
951c395
 
 
 
 
 
 
7cdb936
951c395
 
 
 
c59e337
 
951c395
 
 
7cdb936
d8c6271
 
 
951c395
d8c6271
 
 
7cdb936
 
 
 
 
ab6abb0
 
7cdb936
951c395
d8c6271
 
 
951c395
 
 
 
c59e337
951c395
 
 
c59e337
 
 
951c395
1b167bf
7cdb936
951c395
c59e337
 
d283cbc
7cdb936
c59e337
1b167bf
951c395
 
9b37297
951c395
 
 
 
 
 
7cdb936
c59e337
ab6abb0
 
 
 
 
 
 
 
 
 
 
7cdb936
 
ab6abb0
c59e337
 
 
 
 
 
 
 
 
 
7cdb936
ab6abb0
 
c59e337
 
951c395
 
 
 
 
 
 
 
 
 
 
7cdb936
951c395
 
 
ab6abb0
1b167bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c59e337
1b167bf
 
 
951c395
9b37297
1b167bf
 
 
 
 
 
 
 
9b37297
 
 
1b167bf
 
9b37297
 
 
1b167bf
 
 
 
 
 
 
ab6abb0
1b167bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b37297
1b167bf
 
ab6abb0
1b167bf
 
 
 
 
 
 
 
9b37297
1b167bf
 
 
 
 
 
 
 
9b37297
 
1b167bf
 
 
 
 
 
 
 
 
 
c59e337
1b167bf
 
951c395
9b37297
1b167bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b37297
 
 
1b167bf
 
 
9b37297
 
 
1b167bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b37297
 
 
1b167bf
 
9b37297
1b167bf
 
9b37297
1b167bf
 
 
 
 
 
 
ab6abb0
1b167bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c59e337
 
 
 
1b167bf
ab6abb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b167bf
 
 
 
 
9b37297
ab6abb0
951c395
 
ab6abb0
9b37297
 
1b167bf
ab6abb0
1b167bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import spaces
import gradio as gr
import logging
import os
import tempfile
import pandas as pd
import requests
from bs4 import BeautifulSoup
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import whisper
from moviepy.editor import VideoFileClip
from pydub import AudioSegment
import fitz
import docx
import yt_dlp
from functools import lru_cache
import gc

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

class ModelManager:
    _instance = None
    
    def __new__(cls):
        if cls._instance is None:
            cls._instance = super(ModelManager, cls).__new__(cls)
            cls._instance._initialized = False
        return cls._instance
    
    def __init__(self):
        if not self._initialized:
            self.tokenizer = None
            self.model = None
            self.news_generator = None
            self.whisper_model = None
            self._initialized = True
    
    @spaces.GPU(duration=120)
    def initialize_models(self):
        """Initialize models with ZeroGPU compatible settings"""
        try:
            import torch
            from transformers import AutoModelForCausalLM, AutoTokenizer
            
            HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
            if not HUGGINGFACE_TOKEN:
                raise ValueError("HUGGINGFACE_TOKEN environment variable not set")

            logger.info("Starting model initialization...")
            model_name = "meta-llama/Llama-2-7b-chat-hf"

            # Load tokenizer
            logger.info("Loading tokenizer...")
            self.tokenizer = AutoTokenizer.from_pretrained(
                model_name,
                token=HUGGINGFACE_TOKEN,
                use_fast=True,
                model_max_length=512
            )
            self.tokenizer.pad_token = self.tokenizer.eos_token

            # Initialize model with ZeroGPU compatible settings
            logger.info("Loading model...")
            self.model = AutoModelForCausalLM.from_pretrained(
                model_name,
                token=HUGGINGFACE_TOKEN,
                device_map="auto",
                torch_dtype=torch.float16,
                low_cpu_mem_usage=True,
                use_safetensors=True,
                # ZeroGPU specific settings
                max_memory={0: "6GB"},
                offload_folder="offload",
                offload_state_dict=True
            )

            # Create pipeline with minimal settings
            logger.info("Creating pipeline...")
            from transformers import pipeline
            self.news_generator = pipeline(
                "text-generation",
                model=self.model,
                tokenizer=self.tokenizer,
                device_map="auto",
                torch_dtype=torch.float16,
                max_new_tokens=512,
                do_sample=True,
                temperature=0.7,
                top_p=0.95,
                repetition_penalty=1.2,
                num_return_sequences=1,
                early_stopping=True
            )

            # Load Whisper model with minimal settings
            logger.info("Loading Whisper model...")
            self.whisper_model = whisper.load_model(
                "tiny",
                device="cuda" if torch.cuda.is_available() else "cpu",
                download_root="/tmp/whisper"
            )

            logger.info("All models initialized successfully")
            return True

        except Exception as e:
            logger.error(f"Error during model initialization: {str(e)}")
            self.reset_models()
            raise

    def reset_models(self):
        """Reset all models and clear memory"""
        try:
            if hasattr(self, 'model') and self.model is not None:
                self.model.cpu()
                del self.model
            
            if hasattr(self, 'tokenizer') and self.tokenizer is not None:
                del self.tokenizer
                
            if hasattr(self, 'news_generator') and self.news_generator is not None:
                del self.news_generator
                
            if hasattr(self, 'whisper_model') and self.whisper_model is not None:
                if hasattr(self.whisper_model, 'cpu'):
                    self.whisper_model.cpu()
                del self.whisper_model
            
            self.tokenizer = None
            self.model = None
            self.news_generator = None
            self.whisper_model = None
            
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
                torch.cuda.synchronize()
            
            import gc
            gc.collect()
            
        except Exception as e:
            logger.error(f"Error during model reset: {str(e)}")

    def check_models_initialized(self):
        """Check if all models are properly initialized"""
        if None in (self.tokenizer, self.model, self.news_generator, self.whisper_model):
            logger.warning("Models not initialized, attempting to initialize...")
            self.initialize_models()

    def get_models(self):
        """Get initialized models, initializing if necessary"""
        self.check_models_initialized()
        return self.tokenizer, self.model, self.news_generator, self.whisper_model
        
# Create global model manager instance
model_manager = ModelManager()

@lru_cache(maxsize=32)
def download_social_media_video(url):
    """Download a video from social media."""
    ydl_opts = {
        'format': 'bestaudio/best',
        'postprocessors': [{
            'key': 'FFmpegExtractAudio',
            'preferredcodec': 'mp3',
            'preferredquality': '192',
        }],
        'outtmpl': '%(id)s.%(ext)s',
    }
    try:
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info_dict = ydl.extract_info(url, download=True)
            audio_file = f"{info_dict['id']}.mp3"
        logger.info(f"Video downloaded successfully: {audio_file}")
        return audio_file
    except Exception as e:
        logger.error(f"Error downloading video: {str(e)}")
        raise

def convert_video_to_audio(video_file):
    """Convert a video file to audio."""
    try:
        video = VideoFileClip(video_file)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
            video.audio.write_audiofile(temp_file.name)
            logger.info(f"Video converted to audio: {temp_file.name}")
            return temp_file.name
    except Exception as e:
        logger.error(f"Error converting video: {str(e)}")
        raise

def preprocess_audio(audio_file):
    """Preprocess the audio file to improve quality."""
    try:
        audio = AudioSegment.from_file(audio_file)
        audio = audio.apply_gain(-audio.dBFS + (-20))
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
            audio.export(temp_file.name, format="mp3")
            logger.info(f"Audio preprocessed: {temp_file.name}")
            return temp_file.name
    except Exception as e:
        logger.error(f"Error preprocessing audio: {str(e)}")
        raise

@spaces.GPU(duration=120)
def transcribe_audio(file):
    """Transcribe an audio or video file."""
    try:
        _, _, _, whisper_model = model_manager.get_models()
        
        if isinstance(file, str) and file.startswith('http'):
            file_path = download_social_media_video(file)
        elif isinstance(file, str) and file.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
            file_path = convert_video_to_audio(file)
        else:
            file_path = preprocess_audio(file)

        logger.info(f"Transcribing audio: {file_path}")
        if not os.path.exists(file_path):
            raise FileNotFoundError(f"Audio file not found: {file_path}")

        with torch.inference_mode():
            result = whisper_model.transcribe(file_path)
            if not result:
                raise RuntimeError("Transcription failed to produce results")
                
        transcription = result.get("text", "Error in transcription")
        logger.info(f"Transcription completed: {transcription[:50]}...")
        return transcription
    except Exception as e:
        logger.error(f"Error transcribing: {str(e)}")
        return f"Error processing the file: {str(e)}"

@lru_cache(maxsize=32)
def read_document(document_path):
    """Read the content of a document."""
    try:
        if document_path.endswith(".pdf"):
            doc = fitz.open(document_path)
            return "\n".join([page.get_text() for page in doc])
        elif document_path.endswith(".docx"):
            doc = docx.Document(document_path)
            return "\n".join([paragraph.text for paragraph in doc.paragraphs])
        elif document_path.endswith(".xlsx"):
            return pd.read_excel(document_path).to_string()
        elif document_path.endswith(".csv"):
            return pd.read_csv(document_path).to_string()
        else:
            return "Unsupported file type. Please upload a PDF, DOCX, XLSX or CSV document."
    except Exception as e:
        logger.error(f"Error reading document: {str(e)}")
        return f"Error reading document: {str(e)}"

@lru_cache(maxsize=32)
def read_url(url):
    """Read the content of a URL."""
    try:
        response = requests.get(url)
        response.raise_for_status()
        soup = BeautifulSoup(response.content, 'html.parser')
        return soup.get_text()
    except Exception as e:
        logger.error(f"Error reading URL: {str(e)}")
        return f"Error reading URL: {str(e)}"

def process_social_content(url):
    """Process social media content."""
    try:
        text_content = read_url(url)
        try:
            video_content = transcribe_audio(url)
        except Exception as e:
            logger.error(f"Error processing video content: {str(e)}")
            video_content = None

        return {
            "text": text_content,
            "video": video_content
        }
    except Exception as e:
        logger.error(f"Error processing social content: {str(e)}")
        return None

@spaces.GPU(duration=120)
def generate_news(instructions, facts, size, tone, *args):
    try:
        tokenizer, _, news_generator, _ = model_manager.get_models()
        
        knowledge_base = {
            "instructions": instructions,
            "facts": facts,
            "document_content": [],
            "audio_data": [],
            "url_content": [],
            "social_content": []
        }

        num_audios = 5 * 3
        num_social_urls = 3 * 3
        num_urls = 5

        audios = args[:num_audios]
        social_urls = args[num_audios:num_audios+num_social_urls]
        urls = args[num_audios+num_social_urls:num_audios+num_social_urls+num_urls]
        documents = args[num_audios+num_social_urls+num_urls:]

        for url in urls:
            if url:
                content = read_url(url)
                if content and not content.startswith("Error"):
                    knowledge_base["url_content"].append(content)

        for document in documents:
            if document is not None:
                content = read_document(document.name)
                if content and not content.startswith("Error"):
                    knowledge_base["document_content"].append(content)

        for i in range(0, len(audios), 3):
            audio_file, name, position = audios[i:i+3]
            if audio_file is not None:
                knowledge_base["audio_data"].append({
                    "audio": audio_file,
                    "name": name,
                    "position": position
                })

        for i in range(0, len(social_urls), 3):
            social_url, social_name, social_context = social_urls[i:i+3]
            if social_url:
                social_content = process_social_content(social_url)
                if social_content:
                    knowledge_base["social_content"].append({
                        "url": social_url,
                        "name": social_name,
                        "context": social_context,
                        "text": social_content["text"],
                        "video": social_content["video"]
                    })

        transcriptions_text = ""
        raw_transcriptions = ""

        for idx, data in enumerate(knowledge_base["audio_data"]):
            if data["audio"] is not None:
                transcription = transcribe_audio(data["audio"])
                if not transcription.startswith("Error"):
                    transcriptions_text += f'"{transcription}" - {data["name"]}, {data["position"]}\n'
                    raw_transcriptions += f'[Audio/Video {idx + 1}]: "{transcription}" - {data["name"]}, {data["position"]}\n\n'

        for data in knowledge_base["social_content"]:
            if data["text"] and not str(data["text"]).startswith("Error"):
                transcriptions_text += f'[Social media text]: "{data["text"][:200]}..." - {data["name"]}, {data["context"]}\n'
                raw_transcriptions += transcriptions_text + "\n\n"
            if data["video"] and not str(data["video"]).startswith("Error"):
                video_transcription = f'[Social media video]: "{data["video"]}" - {data["name"]}, {data["context"]}\n'
                transcriptions_text += video_transcription
                raw_transcriptions += video_transcription + "\n\n"

        document_content = "\n\n".join(knowledge_base["document_content"])
        url_content = "\n\n".join(knowledge_base["url_content"])


        prompt = f"""[INST] You are a professional news writer. Write a news article based on the following information:

Instructions: {knowledge_base["instructions"]}
Facts: {knowledge_base["facts"]}
Additional content from documents: {document_content}
Additional content from URLs: {url_content}

Use these transcriptions as direct and indirect quotes:
{transcriptions_text}

Follow these requirements:
- Write a title
- Write a 15-word hook that complements the title
- Write the body with {size} words
- Use a {tone} tone
- Answer the 5 Ws (Who, What, When, Where, Why) in the first paragraph
- Use at least 80% direct quotes (in quotation marks)
- Use proper journalistic style
- Do not invent information
- Be rigorous with the provided facts [/INST]"""

        # Optimize size and max tokens
        max_tokens = min(int(size * 1.5), 512)

        # Generate article with optimized settings
        with torch.inference_mode():
            try:
                news_article = news_generator(
                    prompt,
                    max_new_tokens=max_tokens,
                    num_return_sequences=1,
                    do_sample=True,
                    temperature=0.7,
                    top_p=0.95,
                    repetition_penalty=1.2,
                    early_stopping=True
                )
                
                # Process the generated text
                if isinstance(news_article, list):
                    news_article = news_article[0]['generated_text']
                news_article = news_article.replace('[INST]', '').replace('[/INST]', '').strip()
                
            except Exception as gen_error:
                logger.error(f"Error in text generation: {str(gen_error)}")
                raise
        
        return news_article, raw_transcriptions

    except Exception as e:
        logger.error(f"Error generating news: {str(e)}")
        try:
            # Attempt to recover by resetting and reinitializing models
            model_manager.reset_models()
            model_manager.initialize_models()
            logger.info("Models reinitialized successfully after error")
        except Exception as reinit_error:
            logger.error(f"Failed to reinitialize models: {str(reinit_error)}")
        return f"Error generating the news article: {str(e)}", ""

def create_demo():
    with gr.Blocks() as demo:
        gr.Markdown("## Generador de noticias todo en uno")
        
        with gr.Row():
            with gr.Column(scale=2):
                instrucciones = gr.Textbox(
                    label="Instrucciones para la noticia",
                    lines=2
                )
                hechos = gr.Textbox(
                    label="Describe los hechos de la noticia",
                    lines=4
                )
                tamaño = gr.Number(
                    label="Tamaño del cuerpo de la noticia (en palabras)",
                    value=100
                )
                tono = gr.Dropdown(
                    label="Tono de la noticia",
                    choices=["serio", "neutral", "divertido"],
                    value="neutral"
                )

            with gr.Column(scale=3):
                inputs_list = [instrucciones, hechos, tamaño, tono]

                with gr.Tabs():
                    for i in range(1, 6):
                        with gr.TabItem(f"Audio/Video {i}"):
                            file = gr.File(
                                label=f"Audio/Video {i}",
                                file_types=["audio", "video"]
                            )
                            nombre = gr.Textbox(
                                label="Nombre",
                                placeholder="Nombre del entrevistado"
                            )
                            cargo = gr.Textbox(
                                label="Cargo",
                                placeholder="Cargo o rol"
                            )
                            inputs_list.extend([file, nombre, cargo])

                    for i in range(1, 4):
                        with gr.TabItem(f"Red Social {i}"):
                            social_url = gr.Textbox(
                                label=f"URL de red social {i}",
                                placeholder="https://..."
                            )
                            social_nombre = gr.Textbox(
                                label=f"Nombre de persona/cuenta {i}"
                            )
                            social_contexto = gr.Textbox(
                                label=f"Contexto del contenido {i}",
                                lines=2
                            )
                            inputs_list.extend([social_url, social_nombre, social_contexto])

                    for i in range(1, 6):
                        with gr.TabItem(f"URL {i}"):
                            url = gr.Textbox(
                                label=f"URL {i}",
                                placeholder="https://..."
                            )
                            inputs_list.append(url)

                    for i in range(1, 6):
                        with gr.TabItem(f"Documento {i}"):
                            documento = gr.File(
                                label=f"Documento {i}",
                                file_types=["pdf", "docx", "xlsx", "csv"],
                                file_count="single"
                            )
                            inputs_list.append(documento)

        gr.Markdown("---")

        with gr.Row():
            transcripciones_output = gr.Textbox(
                label="Transcripciones",
                lines=10,
                show_copy_button=True
            )

        gr.Markdown("---")

        with gr.Row():
            generar = gr.Button("Generar borrador")
        
        with gr.Row():
            noticia_output = gr.Textbox(
                label="Borrador generado",
                lines=20,
                show_copy_button=True
            )

        generar.click(
            fn=generate_news,
            inputs=inputs_list,
            outputs=[noticia_output, transcripciones_output]
        )

    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.queue()
    demo.launch(
        share=True,
        server_name="0.0.0.0",
        server_port=7860
    )