Spaces:
Sleeping
Sleeping
CamiloVega
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,8 @@ import tempfile
|
|
6 |
import pandas as pd
|
7 |
import requests
|
8 |
from bs4 import BeautifulSoup
|
9 |
-
from transformers import
|
|
|
10 |
import torch
|
11 |
import whisper
|
12 |
from moviepy.editor import VideoFileClip
|
@@ -15,6 +16,7 @@ import fitz
|
|
15 |
import docx
|
16 |
import yt_dlp
|
17 |
from functools import lru_cache
|
|
|
18 |
|
19 |
# Configure logging
|
20 |
logging.basicConfig(
|
@@ -44,7 +46,6 @@ class ModelManager:
|
|
44 |
def initialize_models(self):
|
45 |
"""Initialize models with optimized settings"""
|
46 |
try:
|
47 |
-
# Get HuggingFace token
|
48 |
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
|
49 |
if not HUGGINGFACE_TOKEN:
|
50 |
raise ValueError("HUGGINGFACE_TOKEN environment variable not set")
|
@@ -60,28 +61,45 @@ class ModelManager:
|
|
60 |
use_fast=True,
|
61 |
model_max_length=512
|
62 |
)
|
63 |
-
if self.tokenizer is None:
|
64 |
-
raise RuntimeError("Failed to initialize tokenizer")
|
65 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
66 |
|
67 |
-
#
|
68 |
-
logger.info("Loading model...")
|
69 |
-
|
70 |
-
model_name,
|
71 |
token=HUGGINGFACE_TOKEN,
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
)
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
# Create
|
82 |
logger.info("Creating pipeline...")
|
83 |
-
self.news_generator =
|
84 |
-
"text-generation",
|
85 |
model=self.model,
|
86 |
tokenizer=self.tokenizer,
|
87 |
device_map="auto",
|
@@ -94,18 +112,15 @@ class ModelManager:
|
|
94 |
num_return_sequences=1,
|
95 |
early_stopping=True
|
96 |
)
|
97 |
-
if self.news_generator is None:
|
98 |
-
raise RuntimeError("Failed to initialize news generator pipeline")
|
99 |
|
100 |
# Load Whisper model with optimized settings
|
101 |
logger.info("Loading Whisper model...")
|
102 |
self.whisper_model = whisper.load_model(
|
103 |
"tiny",
|
104 |
device="cuda",
|
105 |
-
download_root="/tmp/whisper"
|
|
|
106 |
)
|
107 |
-
if self.whisper_model is None:
|
108 |
-
raise RuntimeError("Failed to initialize Whisper model")
|
109 |
|
110 |
logger.info("All models initialized successfully")
|
111 |
return True
|
@@ -118,21 +133,31 @@ class ModelManager:
|
|
118 |
def reset_models(self):
|
119 |
"""Reset all models and clear GPU memory"""
|
120 |
try:
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
self.tokenizer = None
|
127 |
self.model = None
|
128 |
self.news_generator = None
|
129 |
self.whisper_model = None
|
130 |
|
131 |
-
# Clear CUDA cache
|
132 |
if torch.cuda.is_available():
|
133 |
torch.cuda.empty_cache()
|
134 |
torch.cuda.synchronize()
|
135 |
|
|
|
|
|
136 |
except Exception as e:
|
137 |
logger.error(f"Error during model reset: {str(e)}")
|
138 |
|
@@ -150,12 +175,7 @@ class ModelManager:
|
|
150 |
# Create global model manager instance
|
151 |
model_manager = ModelManager()
|
152 |
|
153 |
-
|
154 |
-
try:
|
155 |
-
model_manager.initialize_models()
|
156 |
-
except Exception as e:
|
157 |
-
logger.error(f"Initial model initialization failed: {str(e)}")
|
158 |
-
|
159 |
def download_social_media_video(url):
|
160 |
"""Download a video from social media."""
|
161 |
ydl_opts = {
|
@@ -206,7 +226,6 @@ def preprocess_audio(audio_file):
|
|
206 |
def transcribe_audio(file):
|
207 |
"""Transcribe an audio or video file."""
|
208 |
try:
|
209 |
-
# Get initialized models
|
210 |
_, _, _, whisper_model = model_manager.get_models()
|
211 |
|
212 |
if isinstance(file, str) and file.startswith('http'):
|
@@ -232,6 +251,7 @@ def transcribe_audio(file):
|
|
232 |
logger.error(f"Error transcribing: {str(e)}")
|
233 |
return f"Error processing the file: {str(e)}"
|
234 |
|
|
|
235 |
def read_document(document_path):
|
236 |
"""Read the content of a document."""
|
237 |
try:
|
@@ -251,6 +271,7 @@ def read_document(document_path):
|
|
251 |
logger.error(f"Error reading document: {str(e)}")
|
252 |
return f"Error reading document: {str(e)}"
|
253 |
|
|
|
254 |
def read_url(url):
|
255 |
"""Read the content of a URL."""
|
256 |
try:
|
@@ -283,10 +304,8 @@ def process_social_content(url):
|
|
283 |
@spaces.GPU(duration=120)
|
284 |
def generate_news(instructions, facts, size, tone, *args):
|
285 |
try:
|
286 |
-
# Get initialized models
|
287 |
tokenizer, _, news_generator, _ = model_manager.get_models()
|
288 |
|
289 |
-
# Initialize knowledge base
|
290 |
knowledge_base = {
|
291 |
"instructions": instructions,
|
292 |
"facts": facts,
|
@@ -296,7 +315,6 @@ def generate_news(instructions, facts, size, tone, *args):
|
|
296 |
"social_content": []
|
297 |
}
|
298 |
|
299 |
-
# Parse arguments
|
300 |
num_audios = 5 * 3
|
301 |
num_social_urls = 3 * 3
|
302 |
num_urls = 5
|
@@ -306,21 +324,18 @@ def generate_news(instructions, facts, size, tone, *args):
|
|
306 |
urls = args[num_audios+num_social_urls:num_audios+num_social_urls+num_urls]
|
307 |
documents = args[num_audios+num_social_urls+num_urls:]
|
308 |
|
309 |
-
# Process URLs
|
310 |
for url in urls:
|
311 |
if url:
|
312 |
content = read_url(url)
|
313 |
if content and not content.startswith("Error"):
|
314 |
knowledge_base["url_content"].append(content)
|
315 |
|
316 |
-
# Process documents
|
317 |
for document in documents:
|
318 |
if document is not None:
|
319 |
content = read_document(document.name)
|
320 |
if content and not content.startswith("Error"):
|
321 |
knowledge_base["document_content"].append(content)
|
322 |
|
323 |
-
# Process audio files
|
324 |
for i in range(0, len(audios), 3):
|
325 |
audio_file, name, position = audios[i:i+3]
|
326 |
if audio_file is not None:
|
@@ -330,7 +345,6 @@ def generate_news(instructions, facts, size, tone, *args):
|
|
330 |
"position": position
|
331 |
})
|
332 |
|
333 |
-
# Process social media content
|
334 |
for i in range(0, len(social_urls), 3):
|
335 |
social_url, social_name, social_context = social_urls[i:i+3]
|
336 |
if social_url:
|
@@ -344,7 +358,6 @@ def generate_news(instructions, facts, size, tone, *args):
|
|
344 |
"video": social_content["video"]
|
345 |
})
|
346 |
|
347 |
-
# Build transcriptions
|
348 |
transcriptions_text = ""
|
349 |
raw_transcriptions = ""
|
350 |
|
@@ -367,7 +380,7 @@ def generate_news(instructions, facts, size, tone, *args):
|
|
367 |
document_content = "\n\n".join(knowledge_base["document_content"])
|
368 |
url_content = "\n\n".join(knowledge_base["url_content"])
|
369 |
|
370 |
-
|
371 |
prompt = f"""[INST] You are a professional news writer. Write a news article based on the following information:
|
372 |
|
373 |
Instructions: {knowledge_base["instructions"]}
|
@@ -394,40 +407,45 @@ Follow these requirements:
|
|
394 |
|
395 |
# Generate article with optimized settings
|
396 |
with torch.inference_mode():
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
|
412 |
return news_article, raw_transcriptions
|
413 |
|
414 |
except Exception as e:
|
415 |
logger.error(f"Error generating news: {str(e)}")
|
416 |
try:
|
|
|
417 |
model_manager.reset_models()
|
418 |
model_manager.initialize_models()
|
419 |
-
logger.info("Models reinitialized successfully")
|
420 |
except Exception as reinit_error:
|
421 |
logger.error(f"Failed to reinitialize models: {str(reinit_error)}")
|
422 |
return f"Error generating the news article: {str(e)}", ""
|
423 |
-
|
424 |
def create_demo():
|
425 |
with gr.Blocks() as demo:
|
426 |
gr.Markdown("## Generador de noticias todo en uno")
|
427 |
|
428 |
-
# Contenedor principal con dos columnas
|
429 |
with gr.Row():
|
430 |
-
# Columna izquierda - Formulario principal
|
431 |
with gr.Column(scale=2):
|
432 |
instrucciones = gr.Textbox(
|
433 |
label="Instrucciones para la noticia",
|
@@ -447,14 +465,10 @@ def create_demo():
|
|
447 |
value="neutral"
|
448 |
)
|
449 |
|
450 |
-
# Columna derecha - Tabs y campos
|
451 |
with gr.Column(scale=3):
|
452 |
-
# Lista de inputs que empezamos a construir
|
453 |
inputs_list = [instrucciones, hechos, tamaño, tono]
|
454 |
|
455 |
-
# Tabs en la parte superior
|
456 |
with gr.Tabs():
|
457 |
-
# Audio/Video tabs
|
458 |
for i in range(1, 6):
|
459 |
with gr.TabItem(f"Audio/Video {i}"):
|
460 |
file = gr.File(
|
@@ -471,7 +485,6 @@ def create_demo():
|
|
471 |
)
|
472 |
inputs_list.extend([file, nombre, cargo])
|
473 |
|
474 |
-
# Redes Sociales tabs
|
475 |
for i in range(1, 4):
|
476 |
with gr.TabItem(f"Red Social {i}"):
|
477 |
social_url = gr.Textbox(
|
@@ -487,7 +500,6 @@ def create_demo():
|
|
487 |
)
|
488 |
inputs_list.extend([social_url, social_nombre, social_contexto])
|
489 |
|
490 |
-
# URL tabs
|
491 |
for i in range(1, 6):
|
492 |
with gr.TabItem(f"URL {i}"):
|
493 |
url = gr.Textbox(
|
@@ -496,7 +508,6 @@ def create_demo():
|
|
496 |
)
|
497 |
inputs_list.append(url)
|
498 |
|
499 |
-
# Documento tabs
|
500 |
for i in range(1, 6):
|
501 |
with gr.TabItem(f"Documento {i}"):
|
502 |
documento = gr.File(
|
@@ -506,10 +517,8 @@ def create_demo():
|
|
506 |
)
|
507 |
inputs_list.append(documento)
|
508 |
|
509 |
-
# Separador
|
510 |
gr.Markdown("---")
|
511 |
|
512 |
-
# Transcripciones
|
513 |
with gr.Row():
|
514 |
transcripciones_output = gr.Textbox(
|
515 |
label="Transcripciones",
|
@@ -517,10 +526,8 @@ def create_demo():
|
|
517 |
show_copy_button=True
|
518 |
)
|
519 |
|
520 |
-
# Separador
|
521 |
gr.Markdown("---")
|
522 |
|
523 |
-
# Botón y output
|
524 |
with gr.Row():
|
525 |
generar = gr.Button("Generar borrador")
|
526 |
|
@@ -531,7 +538,6 @@ def create_demo():
|
|
531 |
show_copy_button=True
|
532 |
)
|
533 |
|
534 |
-
# Event handler
|
535 |
generar.click(
|
536 |
fn=generate_news,
|
537 |
inputs=inputs_list,
|
@@ -540,7 +546,6 @@ def create_demo():
|
|
540 |
|
541 |
return demo
|
542 |
|
543 |
-
# Launch the app
|
544 |
if __name__ == "__main__":
|
545 |
demo = create_demo()
|
546 |
demo.queue()
|
|
|
6 |
import pandas as pd
|
7 |
import requests
|
8 |
from bs4 import BeautifulSoup
|
9 |
+
from transformers import AutoTokenizer
|
10 |
+
from unsloth import FastLanguageModel
|
11 |
import torch
|
12 |
import whisper
|
13 |
from moviepy.editor import VideoFileClip
|
|
|
16 |
import docx
|
17 |
import yt_dlp
|
18 |
from functools import lru_cache
|
19 |
+
import gc
|
20 |
|
21 |
# Configure logging
|
22 |
logging.basicConfig(
|
|
|
46 |
def initialize_models(self):
|
47 |
"""Initialize models with optimized settings"""
|
48 |
try:
|
|
|
49 |
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
|
50 |
if not HUGGINGFACE_TOKEN:
|
51 |
raise ValueError("HUGGINGFACE_TOKEN environment variable not set")
|
|
|
61 |
use_fast=True,
|
62 |
model_max_length=512
|
63 |
)
|
|
|
|
|
64 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
65 |
|
66 |
+
# Initialize model with Unsloth optimizations
|
67 |
+
logger.info("Loading model with Unsloth optimizations...")
|
68 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
69 |
+
model_name=model_name,
|
70 |
token=HUGGINGFACE_TOKEN,
|
71 |
+
max_seq_length=512,
|
72 |
+
dtype="float16",
|
73 |
+
load_in_4bit=True, # Use 4-bit quantization
|
74 |
+
device_map="auto", # Automatically handle device mapping
|
75 |
+
kwargs=dict(
|
76 |
+
use_gradient_checkpointing=True,
|
77 |
+
use_flash_attention_2=True,
|
78 |
+
use_merged_kernels=True,
|
79 |
+
)
|
80 |
)
|
81 |
+
|
82 |
+
# Apply additional optimizations
|
83 |
+
model = FastLanguageModel.get_peft_model(
|
84 |
+
model,
|
85 |
+
r=16,
|
86 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
87 |
+
modules_to_save=None,
|
88 |
+
lora_alpha=16,
|
89 |
+
lora_dropout=0.05,
|
90 |
+
bias="none",
|
91 |
+
use_gradient_checkpointing=True,
|
92 |
+
random_state=42,
|
93 |
+
use_rslora=False,
|
94 |
+
use_dora=False,
|
95 |
+
)
|
96 |
+
|
97 |
+
self.model = model
|
98 |
+
logger.info("Model loaded successfully with Unsloth optimizations")
|
99 |
|
100 |
+
# Create optimized pipeline
|
101 |
logger.info("Creating pipeline...")
|
102 |
+
self.news_generator = FastLanguageModel.get_pipeline(
|
|
|
103 |
model=self.model,
|
104 |
tokenizer=self.tokenizer,
|
105 |
device_map="auto",
|
|
|
112 |
num_return_sequences=1,
|
113 |
early_stopping=True
|
114 |
)
|
|
|
|
|
115 |
|
116 |
# Load Whisper model with optimized settings
|
117 |
logger.info("Loading Whisper model...")
|
118 |
self.whisper_model = whisper.load_model(
|
119 |
"tiny",
|
120 |
device="cuda",
|
121 |
+
download_root="/tmp/whisper",
|
122 |
+
in_memory=True
|
123 |
)
|
|
|
|
|
124 |
|
125 |
logger.info("All models initialized successfully")
|
126 |
return True
|
|
|
133 |
def reset_models(self):
|
134 |
"""Reset all models and clear GPU memory"""
|
135 |
try:
|
136 |
+
if hasattr(self, 'model') and self.model is not None:
|
137 |
+
self.model.cpu()
|
138 |
+
del self.model
|
139 |
+
|
140 |
+
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
|
141 |
+
del self.tokenizer
|
142 |
+
|
143 |
+
if hasattr(self, 'news_generator') and self.news_generator is not None:
|
144 |
+
del self.news_generator
|
145 |
+
|
146 |
+
if hasattr(self, 'whisper_model') and self.whisper_model is not None:
|
147 |
+
self.whisper_model.cpu()
|
148 |
+
del self.whisper_model
|
149 |
|
150 |
self.tokenizer = None
|
151 |
self.model = None
|
152 |
self.news_generator = None
|
153 |
self.whisper_model = None
|
154 |
|
|
|
155 |
if torch.cuda.is_available():
|
156 |
torch.cuda.empty_cache()
|
157 |
torch.cuda.synchronize()
|
158 |
|
159 |
+
gc.collect()
|
160 |
+
|
161 |
except Exception as e:
|
162 |
logger.error(f"Error during model reset: {str(e)}")
|
163 |
|
|
|
175 |
# Create global model manager instance
|
176 |
model_manager = ModelManager()
|
177 |
|
178 |
+
@lru_cache(maxsize=32)
|
|
|
|
|
|
|
|
|
|
|
179 |
def download_social_media_video(url):
|
180 |
"""Download a video from social media."""
|
181 |
ydl_opts = {
|
|
|
226 |
def transcribe_audio(file):
|
227 |
"""Transcribe an audio or video file."""
|
228 |
try:
|
|
|
229 |
_, _, _, whisper_model = model_manager.get_models()
|
230 |
|
231 |
if isinstance(file, str) and file.startswith('http'):
|
|
|
251 |
logger.error(f"Error transcribing: {str(e)}")
|
252 |
return f"Error processing the file: {str(e)}"
|
253 |
|
254 |
+
@lru_cache(maxsize=32)
|
255 |
def read_document(document_path):
|
256 |
"""Read the content of a document."""
|
257 |
try:
|
|
|
271 |
logger.error(f"Error reading document: {str(e)}")
|
272 |
return f"Error reading document: {str(e)}"
|
273 |
|
274 |
+
@lru_cache(maxsize=32)
|
275 |
def read_url(url):
|
276 |
"""Read the content of a URL."""
|
277 |
try:
|
|
|
304 |
@spaces.GPU(duration=120)
|
305 |
def generate_news(instructions, facts, size, tone, *args):
|
306 |
try:
|
|
|
307 |
tokenizer, _, news_generator, _ = model_manager.get_models()
|
308 |
|
|
|
309 |
knowledge_base = {
|
310 |
"instructions": instructions,
|
311 |
"facts": facts,
|
|
|
315 |
"social_content": []
|
316 |
}
|
317 |
|
|
|
318 |
num_audios = 5 * 3
|
319 |
num_social_urls = 3 * 3
|
320 |
num_urls = 5
|
|
|
324 |
urls = args[num_audios+num_social_urls:num_audios+num_social_urls+num_urls]
|
325 |
documents = args[num_audios+num_social_urls+num_urls:]
|
326 |
|
|
|
327 |
for url in urls:
|
328 |
if url:
|
329 |
content = read_url(url)
|
330 |
if content and not content.startswith("Error"):
|
331 |
knowledge_base["url_content"].append(content)
|
332 |
|
|
|
333 |
for document in documents:
|
334 |
if document is not None:
|
335 |
content = read_document(document.name)
|
336 |
if content and not content.startswith("Error"):
|
337 |
knowledge_base["document_content"].append(content)
|
338 |
|
|
|
339 |
for i in range(0, len(audios), 3):
|
340 |
audio_file, name, position = audios[i:i+3]
|
341 |
if audio_file is not None:
|
|
|
345 |
"position": position
|
346 |
})
|
347 |
|
|
|
348 |
for i in range(0, len(social_urls), 3):
|
349 |
social_url, social_name, social_context = social_urls[i:i+3]
|
350 |
if social_url:
|
|
|
358 |
"video": social_content["video"]
|
359 |
})
|
360 |
|
|
|
361 |
transcriptions_text = ""
|
362 |
raw_transcriptions = ""
|
363 |
|
|
|
380 |
document_content = "\n\n".join(knowledge_base["document_content"])
|
381 |
url_content = "\n\n".join(knowledge_base["url_content"])
|
382 |
|
383 |
+
|
384 |
prompt = f"""[INST] You are a professional news writer. Write a news article based on the following information:
|
385 |
|
386 |
Instructions: {knowledge_base["instructions"]}
|
|
|
407 |
|
408 |
# Generate article with optimized settings
|
409 |
with torch.inference_mode():
|
410 |
+
try:
|
411 |
+
news_article = news_generator(
|
412 |
+
prompt,
|
413 |
+
max_new_tokens=max_tokens,
|
414 |
+
num_return_sequences=1,
|
415 |
+
do_sample=True,
|
416 |
+
temperature=0.7,
|
417 |
+
top_p=0.95,
|
418 |
+
repetition_penalty=1.2,
|
419 |
+
early_stopping=True
|
420 |
+
)
|
421 |
+
|
422 |
+
# Process the generated text
|
423 |
+
if isinstance(news_article, list):
|
424 |
+
news_article = news_article[0]['generated_text']
|
425 |
+
news_article = news_article.replace('[INST]', '').replace('[/INST]', '').strip()
|
426 |
+
|
427 |
+
except Exception as gen_error:
|
428 |
+
logger.error(f"Error in text generation: {str(gen_error)}")
|
429 |
+
raise
|
430 |
|
431 |
return news_article, raw_transcriptions
|
432 |
|
433 |
except Exception as e:
|
434 |
logger.error(f"Error generating news: {str(e)}")
|
435 |
try:
|
436 |
+
# Attempt to recover by resetting and reinitializing models
|
437 |
model_manager.reset_models()
|
438 |
model_manager.initialize_models()
|
439 |
+
logger.info("Models reinitialized successfully after error")
|
440 |
except Exception as reinit_error:
|
441 |
logger.error(f"Failed to reinitialize models: {str(reinit_error)}")
|
442 |
return f"Error generating the news article: {str(e)}", ""
|
443 |
+
|
444 |
def create_demo():
|
445 |
with gr.Blocks() as demo:
|
446 |
gr.Markdown("## Generador de noticias todo en uno")
|
447 |
|
|
|
448 |
with gr.Row():
|
|
|
449 |
with gr.Column(scale=2):
|
450 |
instrucciones = gr.Textbox(
|
451 |
label="Instrucciones para la noticia",
|
|
|
465 |
value="neutral"
|
466 |
)
|
467 |
|
|
|
468 |
with gr.Column(scale=3):
|
|
|
469 |
inputs_list = [instrucciones, hechos, tamaño, tono]
|
470 |
|
|
|
471 |
with gr.Tabs():
|
|
|
472 |
for i in range(1, 6):
|
473 |
with gr.TabItem(f"Audio/Video {i}"):
|
474 |
file = gr.File(
|
|
|
485 |
)
|
486 |
inputs_list.extend([file, nombre, cargo])
|
487 |
|
|
|
488 |
for i in range(1, 4):
|
489 |
with gr.TabItem(f"Red Social {i}"):
|
490 |
social_url = gr.Textbox(
|
|
|
500 |
)
|
501 |
inputs_list.extend([social_url, social_nombre, social_contexto])
|
502 |
|
|
|
503 |
for i in range(1, 6):
|
504 |
with gr.TabItem(f"URL {i}"):
|
505 |
url = gr.Textbox(
|
|
|
508 |
)
|
509 |
inputs_list.append(url)
|
510 |
|
|
|
511 |
for i in range(1, 6):
|
512 |
with gr.TabItem(f"Documento {i}"):
|
513 |
documento = gr.File(
|
|
|
517 |
)
|
518 |
inputs_list.append(documento)
|
519 |
|
|
|
520 |
gr.Markdown("---")
|
521 |
|
|
|
522 |
with gr.Row():
|
523 |
transcripciones_output = gr.Textbox(
|
524 |
label="Transcripciones",
|
|
|
526 |
show_copy_button=True
|
527 |
)
|
528 |
|
|
|
529 |
gr.Markdown("---")
|
530 |
|
|
|
531 |
with gr.Row():
|
532 |
generar = gr.Button("Generar borrador")
|
533 |
|
|
|
538 |
show_copy_button=True
|
539 |
)
|
540 |
|
|
|
541 |
generar.click(
|
542 |
fn=generate_news,
|
543 |
inputs=inputs_list,
|
|
|
546 |
|
547 |
return demo
|
548 |
|
|
|
549 |
if __name__ == "__main__":
|
550 |
demo = create_demo()
|
551 |
demo.queue()
|