File size: 7,820 Bytes
6cb5353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d43497c
 
 
 
6cb5353
 
 
 
 
 
 
 
 
 
 
 
 
 
a210973
6cb5353
 
a210973
6cb5353
a210973
6cb5353
 
a210973
6cb5353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d43497c
 
 
 
 
 
 
 
 
 
 
6cb5353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b4b5f6
 
6cb5353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from huggingface_hub import hf_hub_download
from PIL import Image
import torch
from datasets import load_dataset, get_dataset_split_names
import numpy as np

import requests
from transformers import ViltProcessor, ViltForQuestionAnswering
from transformers import AutoProcessor, AutoModelForCausalLM
from transformers import BlipProcessor, BlipForQuestionAnswering

import os
import requests
from tqdm import tqdm
import timm

# VLMO: modify in vlmo/config.py: set test_only -> True
from datasets import load_dataset, get_dataset_split_names

import torch
import torchvision
from torchvision.models import resnet50
import torchvision.transforms as transforms
from transformers import VisualBertForMultipleChoice, VisualBertForQuestionAnswering, BertTokenizerFast, AutoTokenizer, ViltForQuestionAnswering

from PIL import Image
import time

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
VQA_URL = "https://dl.fbaipublicfiles.com/pythia/data/answers_vqa.txt"

# load processor and model
def load_model(name):
    if name == "vilt":
        processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
        model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
    elif name == "vilt_finetuned":
        processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
        model = ViltForQuestionAnswering.from_pretrained("Minqin/carets_vqa_finetuned")
    elif name == "git":
        processor = AutoProcessor.from_pretrained("microsoft/git-base-vqav2")
        model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vqav2")
    elif name == "blip":
        processor = BlipProcessor.from_pretrained('Salesforce/blip-vqa-base')
        model = BlipForQuestionAnswering.from_pretrained('Salesforce/blip-vqa-base')
    elif name == "vbert":
        processor = AutoTokenizer.from_pretrained("bert-base-uncased")
        model = VisualBertForQuestionAnswering.from_pretrained("uclanlp/visualbert-vqa")
    else:
        raise ValueError("invalid model name: ", name)

    return (processor, model)

'''
def load_dataset(type):
    if type == "train":
        return load_dataset("HuggingFaceM4/VQAv2", split="train", cache_dir="cache", streaming=False)
    elif type == "test":
        return load_dataset("HuggingFaceM4/VQAv2", split="validation", cache_dir="cache", streaming=False)
    else:
        raise ValueError("invalid dataset: ", type)
'''


def tokenize_function(examples, processor):
    sample = {}
    sample['inputs'] = processor(images=examples['image'], text=examples['question'], return_tensors="pt")
    sample['outputs'] = examples['multiple_choice_answer']
    return sample


def label_count_list(labels):
    res = {}
    keys = set(labels)
    for key in keys:
        res[key] = labels.count(key)
    return res


def get_item(image, question, tokenizer, image_model, model_name):
    inputs = tokenizer(
        question,
        # padding='max_length',
        # truncation=True,
        # max_length=128,
        return_tensors='pt'
    )
    visual_embeds = get_img_feats(image, image_model=image_model, name=model_name)\
        .squeeze(2, 3).unsqueeze(0)
    visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
    visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
    upd_dict = {
        "visual_embeds": visual_embeds,
        "visual_token_type_ids": visual_token_type_ids,
        "visual_attention_mask": visual_attention_mask,
    }
    inputs.update(upd_dict)

    return upd_dict, inputs


def get_img_feats(image, image_model, new_size=None, name='resnet50'):
    if name == "resnet50":
        image_model = torch.nn.Sequential(*list(image_model.children())[:-1])

    # apply transforms when necessary
    if new_size is not None:
        transfrom_f = transforms.Resize((new_size, new_size), interpolation=transforms.InterpolationMode.LANCZOS)
        image = transfrom_f(image)

    transform = transforms.Compose([
        transforms.ToTensor(),  # Convert PIL Image back to tensor
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

    # get features
    image = transform(image)
    if name == "resnet50":
        image_features = image_model(image.unsqueeze(0))
    elif name == "vitb16":
        image_features = image_model.forward_features(image.unsqueeze(0))
    return image_features


def get_data(query, delim=","):
    assert isinstance(query, str)
    if os.path.isfile(query):
        with open(query) as f:
            data = eval(f.read())
    else:
        req = requests.get(query)
        try:
            data = requests.json()
        except Exception:
            data = req.content.decode()
            assert data is not None, "could not connect"
            try:
                data = eval(data)
            except Exception:
                data = data.split("\n")
        req.close()
    return data

def err_msg():
    print("Load error, try again")
    return "[ERROR]"


def get_answer(model_loader_args, img, question, model_name):
    processor, model = model_loader_args[0], model_loader_args[1]
    if model_name == "vilt":
        try:
            encoding = processor(images=img, text=question, return_tensors="pt")
        except Exception:
            return err_msg()
        else:
            outputs = model(**encoding)
            logits = outputs.logits
            idx = logits.argmax(-1).item()
            pred = model.config.id2label[idx]
    
    elif model_name == "vilt_finetuned":
        try:
            encoding = processor(images=img, text=question, return_tensors="pt")
        except Exception:
            return err_msg()
        else:
            outputs = model(**encoding)
            logits = outputs.logits
            idx = logits.argmax(-1).item()
            pred = model.config.id2label[idx]

    elif model_name == "git":
        try:
            pixel_values = processor(images=img, return_tensors="pt").pixel_values
            input_ids = processor(text=question, add_special_tokens=False).input_ids
            input_ids = [processor.tokenizer.cls_token_id] + input_ids
            input_ids = torch.tensor(input_ids).unsqueeze(0)
        except Exception:
            return err_msg()
        else:
            generate_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
            output = processor.batch_decode(generate_ids, skip_special_tokens=True)
            output = output[0]
            pred = output.split('?')[-1]
            pred = pred.strip()

    elif model_name == "vbert":
        vqa_answers = get_data(VQA_URL)
        try:
            # load question and image (processor = tokenizer)
            ## MOD Minxuan: fix error
            _, inputs = get_item(img, question, processor, "resnet50")
            outputs = model(**inputs)
        except Exception:
            return err_msg()
        else:
            answer_idx = torch.argmax(outputs.logits, dim=1).item()  # from 3129
            pred = vqa_answers[answer_idx]

    elif model_name == "blip":
        try:
            pixel_values = processor(images=img, return_tensors="pt").pixel_values
            blip_ques = processor.tokenizer.cls_token + question
            batch_input_ids = processor(text=blip_ques, add_special_tokens=False).input_ids
            batch_input_ids = torch.tensor(batch_input_ids).unsqueeze(0)

            generate_ids = model.generate(pixel_values=pixel_values, input_ids=batch_input_ids, max_length=50)
            blip_output = processor.batch_decode(generate_ids, skip_special_tokens=True)
        except Exception:
            return err_msg()
        else:
            pred = blip_output[0]
    else:
        return "Invalid model name"

    return pred