MinxuanQin commited on
Commit
a210973
·
1 Parent(s): 3743c36

add cache dir

Browse files
Files changed (2) hide show
  1. app.py +2 -1
  2. model_loader.py +4 -5
app.py CHANGED
@@ -8,7 +8,8 @@ from model_loader import *
8
 
9
 
10
  # load dataset
11
- ds = load_dataset("test")
 
12
 
13
  # define selector
14
  model_name = st.sidebar.selectbox(
 
8
 
9
 
10
  # load dataset
11
+ #ds = load_dataset("test")
12
+ ds = load_dataset("HuggingFaceM4/VQAv2", split="validation", cache_dir="cache", streaming=False)
13
 
14
  # define selector
15
  model_name = st.sidebar.selectbox(
model_loader.py CHANGED
@@ -8,7 +8,6 @@ import requests
8
  from transformers import ViltProcessor, ViltForQuestionAnswering
9
  from transformers import AutoProcessor, AutoModelForCausalLM
10
  from transformers import BlipProcessor, BlipForQuestionAnswering
11
- from nltk.corpus import wordnet
12
 
13
  import os
14
  import requests
@@ -25,7 +24,6 @@ import torchvision.transforms as transforms
25
  from transformers import VisualBertForMultipleChoice, VisualBertForQuestionAnswering, BertTokenizerFast, AutoTokenizer, ViltForQuestionAnswering
26
 
27
  from PIL import Image
28
- from nltk.corpus import wordnet
29
  import time
30
 
31
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
@@ -50,14 +48,15 @@ def load_model(name):
50
 
51
  return (processor, model)
52
 
53
-
54
  def load_dataset(type):
55
  if type == "train":
56
- return load_dataset("HuggingFaceM4/VQAv2", split="train", streaming=False)
57
  elif type == "test":
58
- return load_dataset("HuggingFaceM4/VQAv2", split="validation", streaming=False)
59
  else:
60
  raise ValueError("invalid dataset: ", type)
 
61
 
62
 
63
  def tokenize_function(examples, processor):
 
8
  from transformers import ViltProcessor, ViltForQuestionAnswering
9
  from transformers import AutoProcessor, AutoModelForCausalLM
10
  from transformers import BlipProcessor, BlipForQuestionAnswering
 
11
 
12
  import os
13
  import requests
 
24
  from transformers import VisualBertForMultipleChoice, VisualBertForQuestionAnswering, BertTokenizerFast, AutoTokenizer, ViltForQuestionAnswering
25
 
26
  from PIL import Image
 
27
  import time
28
 
29
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
48
 
49
  return (processor, model)
50
 
51
+ '''
52
  def load_dataset(type):
53
  if type == "train":
54
+ return load_dataset("HuggingFaceM4/VQAv2", split="train", cache_dir="cache", streaming=False)
55
  elif type == "test":
56
+ return load_dataset("HuggingFaceM4/VQAv2", split="validation", cache_dir="cache", streaming=False)
57
  else:
58
  raise ValueError("invalid dataset: ", type)
59
+ '''
60
 
61
 
62
  def tokenize_function(examples, processor):