Spaces:
Sleeping
Sleeping
# streamlit_app.py | |
import streamlit as st | |
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.ensemble import VotingClassifier, StackingClassifier | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.tree import DecisionTreeClassifier | |
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier | |
from sklearn.svm import SVC | |
from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, auc, classification_report | |
# Title and description | |
st.title("Classification Model Comparison: Stacking and Voting Classifiers") | |
st.write(""" | |
### Predict target goals using different ensemble techniques | |
This application compares the performance of Stacking and Voting classifiers on the provided dataset. | |
""") | |
# File upload | |
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"]) | |
if uploaded_file is not None: | |
df = pd.read_csv(uploaded_file) | |
st.write("### Raw Data") | |
st.write(df) | |
# Correlation Matrix | |
corrMatrix = df.corr() | |
# Plot heatmap | |
st.write("### Correlation Heatmap") | |
plt.figure(figsize=(25, 10)) | |
color_palette = sns.color_palette("viridis", as_cmap=True) | |
ax = sns.heatmap(corrMatrix, vmin=-1, vmax=1, center=0, cmap=color_palette, annot=True, fmt=".2f", linewidths=0.5, square=True, cbar_kws={"shrink": 0.75}) | |
plt.title('Correlation Heatmap', fontsize=20, pad=20) | |
plt.xticks(rotation=45, ha='right') | |
plt.yticks(rotation=0) | |
st.pyplot(plt) | |
# Replace target variable | |
df['Target_goal'] = df['Target_goal'].replace({1: 0, 2: 1}) | |
# Define features and target variable | |
X = df.drop(columns=['Target_goal']) | |
y = df['Target_goal'] | |
# Split the data | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
# Standardize the data | |
scaler = StandardScaler() | |
X_train = scaler.fit_transform(X_train) | |
X_test = scaler.transform(X_test) | |
# Define base models for stacking and voting | |
estimators = [ | |
('lr', LogisticRegression()), | |
('dt', DecisionTreeClassifier()), | |
('rf', RandomForestClassifier()), | |
('gb', GradientBoostingClassifier()), | |
('svc', SVC(probability=True)) | |
] | |
# Stacking Classifier | |
stacking_clf = StackingClassifier(estimators=estimators, final_estimator=LogisticRegression()) | |
stacking_clf.fit(X_train, y_train) | |
y_pred_stack = stacking_clf.predict(X_test) | |
y_pred_stack_proba = stacking_clf.predict_proba(X_test)[:, 1] | |
# Voting Classifier | |
voting_clf = VotingClassifier(estimators=estimators, voting='soft') | |
voting_clf.fit(X_train, y_train) | |
y_pred_vote = voting_clf.predict(X_test) | |
y_pred_vote_proba = voting_clf.predict_proba(X_test)[:, 1] | |
# Evaluation | |
st.write("### Accuracy Scores") | |
accuracy_stack = accuracy_score(y_test, y_pred_stack) | |
accuracy_vote = accuracy_score(y_test, y_pred_vote) | |
st.write(f'Stacking Classifier Accuracy: {accuracy_stack:.2f}') | |
st.write(f'Voting Classifier Accuracy: {accuracy_vote:.2f}') | |
# Classification Reports | |
st.write("### Classification Reports") | |
st.write("#### Stacking Classifier") | |
st.text(classification_report(y_test, y_pred_stack)) | |
st.write("#### Voting Classifier") | |
st.text(classification_report(y_test, y_pred_vote)) | |
# Confusion Matrix | |
st.write("### Confusion Matrix for Stacking Classifier") | |
conf_matrix_stack = confusion_matrix(y_test, y_pred_stack) | |
plt.figure(figsize=(6, 5)) | |
sns.heatmap(conf_matrix_stack, annot=True, fmt='d', cmap='Blues') | |
plt.title('Stacking Classifier Confusion Matrix') | |
plt.xlabel('Predicted') | |
plt.ylabel('Actual') | |
st.pyplot(plt) | |
st.write("### Confusion Matrix for Voting Classifier") | |
conf_matrix_vote = confusion_matrix(y_test, y_pred_vote) | |
plt.figure(figsize=(6, 5)) | |
sns.heatmap(conf_matrix_vote, annot=True, fmt='d', cmap='Blues') | |
plt.title('Voting Classifier Confusion Matrix') | |
plt.xlabel('Predicted') | |
plt.ylabel('Actual') | |
st.pyplot(plt) | |
# ROC Curve and AUC | |
fpr_stack, tpr_stack, _ = roc_curve(y_test, y_pred_stack_proba) | |
roc_auc_stack = auc(fpr_stack, tpr_stack) | |
fpr_vote, tpr_vote, _ = roc_curve(y_test, y_pred_vote_proba) | |
roc_auc_vote = auc(fpr_vote, tpr_vote) | |
plt.figure(figsize=(10, 6)) | |
plt.plot(fpr_stack, tpr_stack, color='blue', lw=2, label='Stacking Classifier (AUC = %0.2f)' % roc_auc_stack) | |
plt.plot(fpr_vote, tpr_vote, color='red', lw=2, label='Voting Classifier (AUC = %0.2f)' % roc_auc_vote) | |
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--') | |
plt.xlim([0.0, 1.0]) | |
plt.ylim([0.0, 1.05]) | |
plt.xlabel('False Positive Rate') | |
plt.ylabel('True Positive Rate') | |
plt.title('ROC Curve') | |
plt.legend(loc="lower right") | |
st.pyplot(plt) | |