File size: 4,914 Bytes
0fcc2bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# streamlit_app.py

import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import VotingClassifier, StackingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, auc, classification_report

# Title and description
st.title("Classification Model Comparison: Stacking and Voting Classifiers")
st.write("""
### Predict target goals using different ensemble techniques
This application compares the performance of Stacking and Voting classifiers on the provided dataset.
""")

# File upload
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])

if uploaded_file is not None:
    df = pd.read_csv(uploaded_file)

    st.write("### Raw Data")
    st.write(df)

    # Correlation Matrix
    corrMatrix = df.corr()

    # Plot heatmap
    st.write("### Correlation Heatmap")
    plt.figure(figsize=(25, 10))
    color_palette = sns.color_palette("viridis", as_cmap=True)
    ax = sns.heatmap(corrMatrix, vmin=-1, vmax=1, center=0, cmap=color_palette, annot=True, fmt=".2f", linewidths=0.5, square=True, cbar_kws={"shrink": 0.75})
    plt.title('Correlation Heatmap', fontsize=20, pad=20)
    plt.xticks(rotation=45, ha='right')
    plt.yticks(rotation=0)
    st.pyplot(plt)

    # Replace target variable
    df['Target_goal'] = df['Target_goal'].replace({1: 0, 2: 1})

    # Define features and target variable
    X = df.drop(columns=['Target_goal'])
    y = df['Target_goal']

    # Split the data
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    # Standardize the data
    scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)

    # Define base models for stacking and voting
    estimators = [
        ('lr', LogisticRegression()),
        ('dt', DecisionTreeClassifier()),
        ('rf', RandomForestClassifier()),
        ('gb', GradientBoostingClassifier()),
        ('svc', SVC(probability=True))
    ]

    # Stacking Classifier
    stacking_clf = StackingClassifier(estimators=estimators, final_estimator=LogisticRegression())
    stacking_clf.fit(X_train, y_train)
    y_pred_stack = stacking_clf.predict(X_test)
    y_pred_stack_proba = stacking_clf.predict_proba(X_test)[:, 1]

    # Voting Classifier
    voting_clf = VotingClassifier(estimators=estimators, voting='soft')
    voting_clf.fit(X_train, y_train)
    y_pred_vote = voting_clf.predict(X_test)
    y_pred_vote_proba = voting_clf.predict_proba(X_test)[:, 1]

    # Evaluation
    st.write("### Accuracy Scores")
    accuracy_stack = accuracy_score(y_test, y_pred_stack)
    accuracy_vote = accuracy_score(y_test, y_pred_vote)
    st.write(f'Stacking Classifier Accuracy: {accuracy_stack:.2f}')
    st.write(f'Voting Classifier Accuracy: {accuracy_vote:.2f}')

    # Classification Reports
    st.write("### Classification Reports")
    st.write("#### Stacking Classifier")
    st.text(classification_report(y_test, y_pred_stack))

    st.write("#### Voting Classifier")
    st.text(classification_report(y_test, y_pred_vote))

    # Confusion Matrix
    st.write("### Confusion Matrix for Stacking Classifier")
    conf_matrix_stack = confusion_matrix(y_test, y_pred_stack)
    plt.figure(figsize=(6, 5))
    sns.heatmap(conf_matrix_stack, annot=True, fmt='d', cmap='Blues')
    plt.title('Stacking Classifier Confusion Matrix')
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    st.pyplot(plt)

    st.write("### Confusion Matrix for Voting Classifier")
    conf_matrix_vote = confusion_matrix(y_test, y_pred_vote)
    plt.figure(figsize=(6, 5))
    sns.heatmap(conf_matrix_vote, annot=True, fmt='d', cmap='Blues')
    plt.title('Voting Classifier Confusion Matrix')
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    st.pyplot(plt)

    # ROC Curve and AUC
    fpr_stack, tpr_stack, _ = roc_curve(y_test, y_pred_stack_proba)
    roc_auc_stack = auc(fpr_stack, tpr_stack)

    fpr_vote, tpr_vote, _ = roc_curve(y_test, y_pred_vote_proba)
    roc_auc_vote = auc(fpr_vote, tpr_vote)

    plt.figure(figsize=(10, 6))
    plt.plot(fpr_stack, tpr_stack, color='blue', lw=2, label='Stacking Classifier (AUC = %0.2f)' % roc_auc_stack)
    plt.plot(fpr_vote, tpr_vote, color='red', lw=2, label='Voting Classifier (AUC = %0.2f)' % roc_auc_vote)
    plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('ROC Curve')
    plt.legend(loc="lower right")
    st.pyplot(plt)