File size: 14,810 Bytes
657d04f 9346f1c 4596a70 2a5f9fb 1257fc3 8c49cb6 bc7fa0c 8c49cb6 976f398 df66f6e 9d22eee ec84a57 df66f6e efeee6d df66f6e 881c367 8c49cb6 d48413e 535d0d5 2a73469 d48413e 10f9b3c efeee6d d084b26 535d0d5 5812da8 535d0d5 5812da8 535d0d5 ec84a57 26286b2 535d0d5 a885f09 535d0d5 2a73469 8fae53c 657d04f ffefe11 adb0416 657d04f 1f60a20 8c49cb6 72a0f0f 657d04f 512b095 a2790cb 72a0f0f 512b095 657d04f aa7c3f4 adb0416 8c49cb6 657d04f 8c49cb6 657d04f 8c49cb6 ecef2dc 7644705 72a0f0f efeee6d ef5b51c 657d04f ef5b51c adb0416 657d04f adb0416 ef5b51c adb0416 8c49cb6 e3a8804 8c49cb6 657d04f 8c49cb6 657d04f 3ae1b8c 657d04f d2179b0 8c49cb6 d2179b0 7644705 657d04f 01233b7 58733e4 6e8f400 10f9b3c 8cb7546 c4c6bb0 ecef2dc 8c49cb6 e3a8804 72a0f0f e3a8804 8c49cb6 df66f6e 8c49cb6 657d04f 601f2e9 ec84a57 fc1e99b 9d22eee fc1e99b 657d04f bc7fa0c 6e8f400 8c49cb6 2a5f9fb 8c49cb6 657d04f 8c49cb6 2a5f9fb 6e8f400 ecef2dc 657d04f 6e8f400 460d762 6e8f400 2a5f9fb 6e8f400 a2790cb 8c49cb6 a2790cb 8c49cb6 ec84a57 ab6f548 613696b 6e8f400 0227006 613696b 8dfa543 0227006 8dfa543 657d04f 8dfa543 657d04f 8c49cb6 8dfa543 fc1e99b 8dfa543 8c49cb6 8dfa543 fc1e99b 8dfa543 8c49cb6 8dfa543 fc1e99b 8dfa543 657d04f 00358b1 0227006 6e8f400 f280570 603fa89 f280570 b30583b f280570 b30583b 657d04f a163e5c b323764 9d22eee 8c49cb6 b323764 ef627e9 b323764 657d04f 6e8f400 12cea14 9d22eee 8c49cb6 12cea14 217b585 12cea14 9d22eee 8c49cb6 12cea14 6e8f400 8c49cb6 657d04f 881c367 e3de9b1 b1770cd 657d04f 6e8f400 8fae53c 6e8f400 ebe77ac 6e8f400 ebe77ac 8cb7546 d16cee2 67109fc d16cee2 adb0416 d16cee2 dc5cd2c 657d04f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import json
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
TABLE_DESC,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from captcha.image import ImageCaptcha
original_df = None
leaderboard_df = None
def restart_space():
API.restart_space(repo_id=REPO_ID, token=TOKEN)
def download_data():
global original_df
global leaderboard_df
try:
print(EVAL_REQUESTS_PATH,QUEUE_REPO)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH, RESULTS_REPO)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
except Exception:
restart_space()
_, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()
download_data()
"""
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
"""
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
query: str,
):
#filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
filtered_df = filter_queries(query, hidden_df)
df = select_columns(filtered_df, columns)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
print(query)
return df[(df[AutoEvalColumn.eval_name.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
#AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.eval_name.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns] #+ [AutoEvalColumn.dummy.name]
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "" and query is not None:
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[AutoEvalColumn.eval_name.name]
)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
# Show all models
#if show_deleted:
# filtered_df = df
#else: # Show only still on the hub models
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
filtered_df = df
#type_emoji = [t[0] for t in type_query]
#filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
#filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
#numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
#params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
#mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
#filtered_df = filtered_df.loc[mask]
return filtered_df
def validate_upload(input):
try:
with open(input, mode="r") as f:
data = json.load(f)
#raise gr.Error("Cannot divide by zero!")
except:
raise gr.Error("Cannot parse file")
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Leaderboard", elem_id="llm-benchmark-tab-table", id=0) as tb_board:
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and not c.dummy
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
"""
with gr.Column(min_width=320):
# with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in Precision],
value=[i.value.name for i in Precision],
interactive=True,
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
"""
gr.Markdown(TABLE_DESC, elem_classes="markdown-text")
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
wrap=False,
#column_widths=["2%", "2%"],
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
],
leaderboard_table,
)
for selector in [
shown_columns,
]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
search_bar,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
"""
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
"""
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
#precision = gr.Radio(["bfloat16", "float16", "4bit"], label="Precision", info="What precision are you using for inference?")
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="other",
interactive=True,
info="What weight precision were you using during the evaluation?"
)
hf_model_id = gr.Textbox(label="Model link (Optional)", info="URL to the model's Hugging Face repository, or it's official website")
contact_email = gr.Textbox(label="Your E-Mail")
file_output = gr.File()
upload_button = gr.UploadButton("Upload json", file_types=['.json'])
upload_button.upload(validate_upload, upload_button, file_output)
"""
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
"""
"""
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
"""
captcha_image = ImageCaptcha(200, 150)
captcha_data = captcha_image.generate("1234")
#image = gr.Image(captcha_data)
submit_button = gr.Button("Submit Eval", interactive=True)
submission_result = gr.Markdown()
submit_button.click(
fn = add_new_eval,
inputs = [
model_name_textbox,
upload_button,
precision,
hf_model_id,
contact_email
],
outputs = [submission_result, model_name_textbox, precision, hf_model_id, contact_email],
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
#scheduler = BackgroundScheduler()
#scheduler.add_job(restart_space, "interval", seconds=3600)
#scheduler.start()
demo.queue(default_concurrency_limit=40).launch(server_name="0.0.0.0")
|