davidadamczyk commited on
Commit
657d04f
·
1 Parent(s): eb088fd

first version of czechbench leaderboard

Browse files
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import gradio as gr
2
  import pandas as pd
3
  from apscheduler.schedulers.background import BackgroundScheduler
@@ -53,48 +54,46 @@ except Exception:
53
  raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
54
  leaderboard_df = original_df.copy()
55
 
 
56
  (
57
  finished_eval_queue_df,
58
  running_eval_queue_df,
59
  pending_eval_queue_df,
60
  ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
61
-
62
 
63
  # Searching and filtering
64
  def update_table(
65
  hidden_df: pd.DataFrame,
66
  columns: list,
67
- type_query: list,
68
- precision_query: str,
69
- size_query: list,
70
- show_deleted: bool,
71
  query: str,
72
- ):
73
- filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
74
- filtered_df = filter_queries(query, filtered_df)
75
  df = select_columns(filtered_df, columns)
76
  return df
77
 
78
 
79
  def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
80
- return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
 
81
 
82
 
83
  def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
84
  always_here_cols = [
85
- AutoEvalColumn.model_type_symbol.name,
86
- AutoEvalColumn.model.name,
87
  ]
88
  # We use COLS to maintain sorting
89
  filtered_df = df[
90
- always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
91
  ]
92
  return filtered_df
93
 
94
 
95
  def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
96
  final_df = []
97
- if query != "":
98
  queries = [q.strip() for q in query.split(";")]
99
  for _q in queries:
100
  _q = _q.strip()
@@ -105,7 +104,7 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
105
  if len(final_df) > 0:
106
  filtered_df = pd.concat(final_df)
107
  filtered_df = filtered_df.drop_duplicates(
108
- subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
109
  )
110
 
111
  return filtered_df
@@ -115,23 +114,35 @@ def filter_models(
115
  df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
116
  ) -> pd.DataFrame:
117
  # Show all models
118
- if show_deleted:
119
- filtered_df = df
120
- else: # Show only still on the hub models
121
- filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
 
 
122
 
123
- type_emoji = [t[0] for t in type_query]
124
- filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
125
- filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
126
 
127
- numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
128
- params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
129
- mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
130
- filtered_df = filtered_df.loc[mask]
131
 
132
  return filtered_df
133
 
134
 
 
 
 
 
 
 
 
 
 
 
135
  demo = gr.Blocks(css=custom_css)
136
  with demo:
137
  gr.HTML(TITLE)
@@ -163,10 +174,7 @@ with demo:
163
  elem_id="column-select",
164
  interactive=True,
165
  )
166
- with gr.Row():
167
- deleted_models_visibility = gr.Checkbox(
168
- value=False, label="Show gated/private/deleted models", interactive=True
169
- )
170
  with gr.Column(min_width=320):
171
  # with gr.Box(elem_id="box-filter"):
172
  filter_columns_type = gr.CheckboxGroup(
@@ -190,19 +198,20 @@ with demo:
190
  interactive=True,
191
  elem_id="filter-columns-size",
192
  )
193
-
194
  leaderboard_table = gr.components.Dataframe(
195
  value=leaderboard_df[
196
  [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
197
  + shown_columns.value
198
- + [AutoEvalColumn.dummy.name]
199
  ],
200
  headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
201
  datatype=TYPES,
202
  elem_id="leaderboard-table",
203
  interactive=False,
204
  visible=True,
205
- column_widths=["2%", "33%"],
 
206
  )
207
 
208
  # Dummy leaderboard for handling the case when the user uses backspace key
@@ -217,30 +226,18 @@ with demo:
217
  [
218
  hidden_leaderboard_table_for_search,
219
  shown_columns,
220
- filter_columns_type,
221
- filter_columns_precision,
222
- filter_columns_size,
223
- deleted_models_visibility,
224
  search_bar,
225
  ],
226
  leaderboard_table,
227
  )
228
  for selector in [
229
  shown_columns,
230
- filter_columns_type,
231
- filter_columns_precision,
232
- filter_columns_size,
233
- deleted_models_visibility,
234
  ]:
235
  selector.change(
236
  update_table,
237
  [
238
  hidden_leaderboard_table_for_search,
239
  shown_columns,
240
- filter_columns_type,
241
- filter_columns_precision,
242
- filter_columns_size,
243
- deleted_models_visibility,
244
  search_bar,
245
  ],
246
  leaderboard_table,
@@ -254,8 +251,9 @@ with demo:
254
  with gr.Column():
255
  with gr.Row():
256
  gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
257
-
258
  with gr.Column():
 
259
  with gr.Accordion(
260
  f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
261
  open=False,
@@ -290,12 +288,18 @@ with demo:
290
  datatype=EVAL_TYPES,
291
  row_count=5,
292
  )
 
293
  with gr.Row():
294
  gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
295
 
296
  with gr.Row():
297
  with gr.Column():
298
  model_name_textbox = gr.Textbox(label="Model name")
 
 
 
 
 
299
  revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
300
  model_type = gr.Dropdown(
301
  choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
@@ -304,7 +308,8 @@ with demo:
304
  value=None,
305
  interactive=True,
306
  )
307
-
 
308
  with gr.Column():
309
  precision = gr.Dropdown(
310
  choices=[i.value.name for i in Precision if i != Precision.Unknown],
@@ -321,18 +326,14 @@ with demo:
321
  interactive=True,
322
  )
323
  base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
324
-
325
- submit_button = gr.Button("Submit Eval")
326
  submission_result = gr.Markdown()
327
  submit_button.click(
328
  add_new_eval,
329
  [
330
  model_name_textbox,
331
- base_model_name_textbox,
332
- revision_name_textbox,
333
- precision,
334
- weight_type,
335
- model_type,
336
  ],
337
  submission_result,
338
  )
@@ -350,4 +351,4 @@ with demo:
350
  scheduler = BackgroundScheduler()
351
  scheduler.add_job(restart_space, "interval", seconds=1800)
352
  scheduler.start()
353
- demo.queue(default_concurrency_limit=40).launch()
 
1
+ import json
2
  import gradio as gr
3
  import pandas as pd
4
  from apscheduler.schedulers.background import BackgroundScheduler
 
54
  raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
55
  leaderboard_df = original_df.copy()
56
 
57
+ """
58
  (
59
  finished_eval_queue_df,
60
  running_eval_queue_df,
61
  pending_eval_queue_df,
62
  ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
63
+ """
64
 
65
  # Searching and filtering
66
  def update_table(
67
  hidden_df: pd.DataFrame,
68
  columns: list,
 
 
 
 
69
  query: str,
70
+ ):
71
+ #filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
72
+ filtered_df = filter_queries(query, hidden_df)
73
  df = select_columns(filtered_df, columns)
74
  return df
75
 
76
 
77
  def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
78
+ print(query)
79
+ return df[(df[AutoEvalColumn.eval_name.name].str.contains(query, case=False))]
80
 
81
 
82
  def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
83
  always_here_cols = [
84
+ #AutoEvalColumn.model_type_symbol.name,
85
+ AutoEvalColumn.eval_name.name,
86
  ]
87
  # We use COLS to maintain sorting
88
  filtered_df = df[
89
+ always_here_cols + [c for c in COLS if c in df.columns and c in columns] #+ [AutoEvalColumn.dummy.name]
90
  ]
91
  return filtered_df
92
 
93
 
94
  def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
95
  final_df = []
96
+ if query != "" and query is not None:
97
  queries = [q.strip() for q in query.split(";")]
98
  for _q in queries:
99
  _q = _q.strip()
 
104
  if len(final_df) > 0:
105
  filtered_df = pd.concat(final_df)
106
  filtered_df = filtered_df.drop_duplicates(
107
+ subset=[AutoEvalColumn.eval_name.name]
108
  )
109
 
110
  return filtered_df
 
114
  df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
115
  ) -> pd.DataFrame:
116
  # Show all models
117
+ #if show_deleted:
118
+ # filtered_df = df
119
+ #else: # Show only still on the hub models
120
+ # filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
121
+
122
+ filtered_df = df
123
 
124
+ #type_emoji = [t[0] for t in type_query]
125
+ #filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
126
+ #filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
127
 
128
+ #numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
129
+ #params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
130
+ #mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
131
+ #filtered_df = filtered_df.loc[mask]
132
 
133
  return filtered_df
134
 
135
 
136
+ def validate_upload(input):
137
+ try:
138
+ with open(input, mode="r") as f:
139
+ data = json.load(f)
140
+ #raise gr.Error("Cannot divide by zero!")
141
+ except:
142
+ raise gr.Error("Cannot parse file")
143
+
144
+
145
+
146
  demo = gr.Blocks(css=custom_css)
147
  with demo:
148
  gr.HTML(TITLE)
 
174
  elem_id="column-select",
175
  interactive=True,
176
  )
177
+ """
 
 
 
178
  with gr.Column(min_width=320):
179
  # with gr.Box(elem_id="box-filter"):
180
  filter_columns_type = gr.CheckboxGroup(
 
198
  interactive=True,
199
  elem_id="filter-columns-size",
200
  )
201
+ """
202
  leaderboard_table = gr.components.Dataframe(
203
  value=leaderboard_df[
204
  [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
205
  + shown_columns.value
206
+
207
  ],
208
  headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
209
  datatype=TYPES,
210
  elem_id="leaderboard-table",
211
  interactive=False,
212
  visible=True,
213
+ wrap=False,
214
+ #column_widths=["2%", "2%"],
215
  )
216
 
217
  # Dummy leaderboard for handling the case when the user uses backspace key
 
226
  [
227
  hidden_leaderboard_table_for_search,
228
  shown_columns,
 
 
 
 
229
  search_bar,
230
  ],
231
  leaderboard_table,
232
  )
233
  for selector in [
234
  shown_columns,
 
 
 
 
235
  ]:
236
  selector.change(
237
  update_table,
238
  [
239
  hidden_leaderboard_table_for_search,
240
  shown_columns,
 
 
 
 
241
  search_bar,
242
  ],
243
  leaderboard_table,
 
251
  with gr.Column():
252
  with gr.Row():
253
  gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
254
+ """
255
  with gr.Column():
256
+
257
  with gr.Accordion(
258
  f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
259
  open=False,
 
288
  datatype=EVAL_TYPES,
289
  row_count=5,
290
  )
291
+ """
292
  with gr.Row():
293
  gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
294
 
295
  with gr.Row():
296
  with gr.Column():
297
  model_name_textbox = gr.Textbox(label="Model name")
298
+
299
+ file_output = gr.File()
300
+ upload_button = gr.UploadButton("Upload json", file_types=['.json'])
301
+ upload_button.upload(validate_upload, upload_button, file_output)
302
+ """
303
  revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
304
  model_type = gr.Dropdown(
305
  choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
 
308
  value=None,
309
  interactive=True,
310
  )
311
+ """
312
+ """
313
  with gr.Column():
314
  precision = gr.Dropdown(
315
  choices=[i.value.name for i in Precision if i != Precision.Unknown],
 
326
  interactive=True,
327
  )
328
  base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
329
+ """
330
+ submit_button = gr.Button("Submit Eval", interactive=True)
331
  submission_result = gr.Markdown()
332
  submit_button.click(
333
  add_new_eval,
334
  [
335
  model_name_textbox,
336
+ upload_button
 
 
 
 
337
  ],
338
  submission_result,
339
  )
 
351
  scheduler = BackgroundScheduler()
352
  scheduler.add_job(restart_space, "interval", seconds=1800)
353
  scheduler.start()
354
+ demo.queue(default_concurrency_limit=40).launch(server_name="0.0.0.0")
src/display/about.py CHANGED
@@ -12,9 +12,26 @@ class Task:
12
  # Init: to update with your specific keys
13
  class Tasks(Enum):
14
  # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
- task0 = Task("task_agree", "accuracy", "AGREE")
16
- task1 = Task("task_anli", "accuracy", "ANLI")
17
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  # Your leaderboard name
20
  TITLE = """<h1 align="center" id="space-title">CzechBench example leaderboard</h1>"""
 
12
  # Init: to update with your specific keys
13
  class Tasks(Enum):
14
  # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
+ task0 = Task("task_agree", "accuracy", "agree")
16
+ task1 = Task("task_anli", "accuracy", "anli")
17
+ task2 = Task("task_agree_en", "accuracy", "anli_en")
18
+ task3 = Task("arc_challenge", "accuracy", "arc_challenge")
19
+ task4 = Task("arc_easy", "accuracy", "arc_easy")
20
+ task5 = Task("belebele", "accuracy", "belebele")
21
+ task6 = Task("ctkfacts", "accuracy", "ctkfacts")
22
+ task7 = Task("ctkfacts_en", "accuracy", "ctkfacts_en")
23
+ task8 = Task("czechnews", "accuracy", "czechnews")
24
+ task9 = Task("facebook_comments", "accuracy", "facebook_comments")
25
+ task10 = Task("klokánek", "accuracy", "klokánek")
26
+ task11 = Task("mall_reviews", "accuracy", "mall_reviews")
27
+ task12 = Task("mmlu", "accuracy", "mmlu")
28
+ task13 = Task("snli", "accuracy", "snli")
29
+ task14 = Task("snli_en", "accuracy", "snli_en")
30
+ task15 = Task("subjectivity", "accuracy", "subjectivity")
31
+ task16 = Task("subjectivity_en", "accuracy", "subjectivity_en")
32
+ task17 = Task("truthfulqa", "accuracy", "truthfulqa")
33
+ task18 = Task("gsm8k", "accuracy", "gsm8k")
34
+ task19 = Task("squad", "accuracy", "squad")
35
 
36
  # Your leaderboard name
37
  TITLE = """<h1 align="center" id="space-title">CzechBench example leaderboard</h1>"""
src/display/utils.py CHANGED
@@ -25,6 +25,7 @@ class ColumnContent:
25
 
26
  ## Leaderboard columns
27
  auto_eval_column_dict = []
 
28
  # Init
29
  auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
30
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
@@ -44,6 +45,29 @@ auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Avai
44
  auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
45
  # Dummy column for the search bar (hidden by the custom CSS)
46
  auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  # We use make dataclass to dynamically fill the scores from Tasks
49
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
 
25
 
26
  ## Leaderboard columns
27
  auto_eval_column_dict = []
28
+ """
29
  # Init
30
  auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
31
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
 
45
  auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
46
  # Dummy column for the search bar (hidden by the custom CSS)
47
  auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
48
+ """
49
+
50
+ auto_eval_column_dict.append(["eval_name", ColumnContent, ColumnContent("eval_name", "str", True, never_hidden=True)])
51
+ auto_eval_column_dict.append(["agree", ColumnContent, ColumnContent("agree", "number", True)])
52
+ auto_eval_column_dict.append(["anli", ColumnContent, ColumnContent("anli", "number", True)])
53
+ auto_eval_column_dict.append(["anli_en", ColumnContent, ColumnContent("anli_en", "number", True)])
54
+ auto_eval_column_dict.append(["arc_challenge", ColumnContent, ColumnContent("arc_challenge", "number", True)])
55
+ auto_eval_column_dict.append(["arc_easy", ColumnContent, ColumnContent("arc_easy", "number", True)])
56
+ auto_eval_column_dict.append(["belebele", ColumnContent, ColumnContent("belebele", "number", True)])
57
+ auto_eval_column_dict.append(["ctkfacts", ColumnContent, ColumnContent("ctkfacts", "number", True)])
58
+ auto_eval_column_dict.append(["ctkfacts_en", ColumnContent, ColumnContent("ctkfacts_en", "number", True)])
59
+ auto_eval_column_dict.append(["czechnews", ColumnContent, ColumnContent("czechnews", "number", True)])
60
+ auto_eval_column_dict.append(["facebook_comments", ColumnContent, ColumnContent("facebook_comments", "number", True)])
61
+ auto_eval_column_dict.append(["klokánek", ColumnContent, ColumnContent("klokánek", "number", True)])
62
+ auto_eval_column_dict.append(["mall_reviews", ColumnContent, ColumnContent("mall_reviews", "number", True)])
63
+ auto_eval_column_dict.append(["mmlu", ColumnContent, ColumnContent("mmlu", "number", True)])
64
+ auto_eval_column_dict.append(["snli", ColumnContent, ColumnContent("snli", "number", True)])
65
+ auto_eval_column_dict.append(["snli_en", ColumnContent, ColumnContent("snli_en", "number", True)])
66
+ auto_eval_column_dict.append(["subjectivity", ColumnContent, ColumnContent("subjectivity", "number", True)])
67
+ auto_eval_column_dict.append(["subjectivity_en", ColumnContent, ColumnContent("subjectivity_en", "number", True)])
68
+ auto_eval_column_dict.append(["truthfulqa", ColumnContent, ColumnContent("truthfulqa", "number", True)])
69
+ auto_eval_column_dict.append(["gsm8k", ColumnContent, ColumnContent("gsm8k", "number", True)])
70
+ auto_eval_column_dict.append(["squad", ColumnContent, ColumnContent("squad", "number", True)])
71
 
72
  # We use make dataclass to dynamically fill the scores from Tasks
73
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
src/envs.py CHANGED
@@ -4,13 +4,13 @@ from huggingface_hub import HfApi
4
 
5
  # clone / pull the lmeh eval data
6
  TOKEN = os.environ.get("TOKEN", None)
7
-
8
  OWNER = "davidadamczyk"
9
  REPO_ID = f"{OWNER}/leaderboard"
10
- QUEUE_REPO = f"{OWNER}/requests"
11
- RESULTS_REPO = f"{OWNER}/results"
12
 
13
- CACHE_PATH = os.getenv("HF_HOME", ".")
14
 
15
  # Local caches
16
  EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
 
4
 
5
  # clone / pull the lmeh eval data
6
  TOKEN = os.environ.get("TOKEN", None)
7
+ print(TOKEN)
8
  OWNER = "davidadamczyk"
9
  REPO_ID = f"{OWNER}/leaderboard"
10
+ QUEUE_REPO = f"{OWNER}/leaderboard"
11
+ RESULTS_REPO = f"{OWNER}/leaderboard"
12
 
13
+ CACHE_PATH = "." #os.getenv("HF_HOME", ".")
14
 
15
  # Local caches
16
  EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
src/leaderboard/read_evals.py CHANGED
@@ -35,7 +35,7 @@ class EvalResult:
35
  """Inits the result from the specific model result file"""
36
  with open(json_filepath) as fp:
37
  data = json.load(fp)
38
-
39
  config = data.get("config")
40
 
41
  # Precision
@@ -168,25 +168,10 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
168
  for file in files:
169
  model_result_filepaths.append(os.path.join(root, file))
170
 
171
- eval_results = {}
172
  for model_result_filepath in model_result_filepaths:
173
  # Creation of result
174
  eval_result = EvalResult.init_from_json_file(model_result_filepath)
175
- eval_result.update_with_request_file(requests_path)
176
-
177
- # Store results of same eval together
178
- eval_name = eval_result.eval_name
179
- if eval_name in eval_results.keys():
180
- eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
181
- else:
182
- eval_results[eval_name] = eval_result
183
-
184
- results = []
185
- for v in eval_results.values():
186
- try:
187
- v.to_dict() # we test if the dict version is complete
188
- results.append(v)
189
- except KeyError: # not all eval values present
190
- continue
191
-
192
- return results
 
35
  """Inits the result from the specific model result file"""
36
  with open(json_filepath) as fp:
37
  data = json.load(fp)
38
+ return data
39
  config = data.get("config")
40
 
41
  # Precision
 
168
  for file in files:
169
  model_result_filepaths.append(os.path.join(root, file))
170
 
171
+ eval_results = []
172
  for model_result_filepath in model_result_filepaths:
173
  # Creation of result
174
  eval_result = EvalResult.init_from_json_file(model_result_filepath)
175
+ eval_results.append(eval_result)
176
+
177
+ return eval_results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/populate.py CHANGED
@@ -10,10 +10,10 @@ from src.leaderboard.read_evals import get_raw_eval_results
10
 
11
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
  raw_data = get_raw_eval_results(results_path, requests_path)
13
- all_data_json = [v.to_dict() for v in raw_data]
14
-
15
- df = pd.DataFrame.from_records(all_data_json)
16
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
17
  df = df[cols].round(decimals=2)
18
 
19
  # filter out if any of the benchmarks have not been produced
 
10
 
11
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
  raw_data = get_raw_eval_results(results_path, requests_path)
13
+ #all_data_json = [v.to_dict() for v in raw_data]
14
+ df = pd.DataFrame.from_records(raw_data)
15
+ #df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
16
+
17
  df = df[cols].round(decimals=2)
18
 
19
  # filter out if any of the benchmarks have not been produced
src/submission/submit.py CHANGED
@@ -1,9 +1,9 @@
1
  import json
2
  import os
3
  from datetime import datetime, timezone
4
-
5
  from src.display.formatting import styled_error, styled_message, styled_warning
6
- from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
  from src.submission.check_validity import (
8
  already_submitted_models,
9
  check_model_card,
@@ -11,18 +11,61 @@ from src.submission.check_validity import (
11
  is_model_on_hub,
12
  )
13
 
 
 
 
 
 
14
  REQUESTED_MODELS = None
15
  USERS_TO_SUBMISSION_DATES = None
16
 
17
 
18
  def add_new_eval(
19
- model: str,
20
- base_model: str,
21
- revision: str,
22
- precision: str,
23
- weight_type: str,
24
- model_type: str,
25
  ):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  global REQUESTED_MODELS
27
  global USERS_TO_SUBMISSION_DATES
28
  if not REQUESTED_MODELS:
@@ -115,7 +158,7 @@ def add_new_eval(
115
 
116
  # Remove the local file
117
  os.remove(out_path)
118
-
119
  return styled_message(
120
  "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
121
  )
 
1
  import json
2
  import os
3
  from datetime import datetime, timezone
4
+ import numpy as np
5
  from src.display.formatting import styled_error, styled_message, styled_warning
6
+ from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, RESULTS_REPO
7
  from src.submission.check_validity import (
8
  already_submitted_models,
9
  check_model_card,
 
11
  is_model_on_hub,
12
  )
13
 
14
+ from src.display.utils import (
15
+ BENCHMARK_COLS,
16
+ COLS
17
+ )
18
+
19
  REQUESTED_MODELS = None
20
  USERS_TO_SUBMISSION_DATES = None
21
 
22
 
23
  def add_new_eval(
24
+ eval_name: str,
25
+ upload: object
 
 
 
 
26
  ):
27
+ with open(upload, mode="r") as f:
28
+ data = json.load(f)
29
+
30
+ results = data['results']
31
+
32
+ ret = {"eval_name": eval_name}
33
+ # TODO add complex validation
34
+ print(results.keys())
35
+ print(BENCHMARK_COLS)
36
+ for input_col in results.keys():
37
+ if input_col not in BENCHMARK_COLS:
38
+ print(input_col)
39
+ return styled_error(f'Missing: {input_col}')
40
+ #ret.update({i:j['acc,none'] for i,j in results.items()})
41
+ ret.update({i:round(np.random.normal(1, 0.5, 1)[0], 2) for i,j in results.items()})
42
+
43
+
44
+ user_name = "davidadamczyk"
45
+ OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
46
+
47
+ out_path = f"{OUT_DIR}/{eval_name}_eval_request.json"
48
+
49
+ with open(out_path, "w") as f:
50
+ f.write(json.dumps(ret))
51
+
52
+
53
+ print("Uploading eval file")
54
+
55
+ print("path_or_fileobj: ", out_path)
56
+ print("path_in_repo: ",out_path.split("eval-queue/")[1])
57
+ print("repo_id: ", RESULTS_REPO)
58
+ print("repo_type: ", "dataset")
59
+
60
+ API.upload_file(
61
+ path_or_fileobj=out_path,
62
+ path_in_repo=out_path.split("eval-queue/")[1],
63
+ repo_id=RESULTS_REPO,
64
+ repo_type="dataset",
65
+ commit_message=f"Add {eval_name} to eval queue",
66
+ )
67
+
68
+ """
69
  global REQUESTED_MODELS
70
  global USERS_TO_SUBMISSION_DATES
71
  if not REQUESTED_MODELS:
 
158
 
159
  # Remove the local file
160
  os.remove(out_path)
161
+ """
162
  return styled_message(
163
  "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
164
  )