Spaces:
Runtime error
Runtime error
import os | |
from videogen_hub import MODEL_PATH | |
class ShowOne(): | |
def __init__(self): | |
""" | |
Initialize the Pipeline, which download all necessary models. | |
""" | |
from videogen_hub.pipelines.show_1.run_inference import ShowOnePipeline | |
from huggingface_hub import snapshot_download | |
base_path = snapshot_download( | |
repo_id="showlab/show-1-base", | |
local_dir=os.path.join(MODEL_PATH, "showlab", "show-1-base"), | |
local_dir_use_symlinks = False | |
) | |
interp_path = snapshot_download( | |
repo_id="showlab/show-1-interpolation", | |
local_dir=os.path.join(MODEL_PATH, "showlab", "show-1-interpolation"), | |
) | |
deepfloyd_path = snapshot_download( | |
repo_id="DeepFloyd/IF-II-L-v1.0", | |
local_dir=os.path.join(MODEL_PATH, "DeepFloyd/IF-II-L-v1.0"), | |
) | |
sr1_path = snapshot_download( | |
repo_id="showlab/show-1-sr1", | |
local_dir=os.path.join(MODEL_PATH, "showlab", "show-1-sr1"), | |
) | |
sr2_path = snapshot_download( | |
repo_id="showlab/show-1-sr2", | |
local_dir=os.path.join(MODEL_PATH, "showlab", "show-1-sr2"), | |
) | |
self.pipeline = ShowOnePipeline(base_path, interp_path, deepfloyd_path, sr1_path, sr2_path) | |
def infer_one_video(self, | |
prompt: str = None, | |
size: list = [320, 512], | |
seconds: int = 2, | |
fps: int = 8, | |
seed: int = 42): | |
""" | |
Generates a single video based on a textual prompt. The output is a tensor representing the video. | |
Since the initial_num_frames is set to be 8 as shown in paper in the pipeline, | |
we need the (number of frames - 1) divisible by 7 to manage interpolation. | |
Args: | |
prompt (str, optional): The text prompt that guides the video generation. If not specified, the video generation will rely solely on the input image. Defaults to None. | |
size (list, optional): Specifies the resolution of the output video as [height, width]. Defaults to [320, 512]. | |
seconds (int, optional): The duration of the video in seconds. Defaults to 2. | |
fps (int, optional): The number of frames per second in the generated video. This determines how smooth the video appears. Defaults to 8. | |
seed (int, optional): A seed value for random number generation, ensuring reproducibility of the video generation process. Defaults to 42. | |
Returns: | |
torch.Tensor: A tensor representing the generated video, structured as (time, channel, height, width). | |
""" | |
num_frames = fps * seconds | |
assert (num_frames - 1) % 7 == 0 | |
scaling_factor = (num_frames - 1) // 7 | |
video = self.pipeline.inference(prompt=prompt, | |
negative_prompt="", | |
output_size=size, | |
initial_num_frames=8, | |
scaling_factor=scaling_factor, | |
seed=seed) | |
return video | |