import os from videogen_hub import MODEL_PATH class ShowOne(): def __init__(self): """ Initialize the Pipeline, which download all necessary models. """ from videogen_hub.pipelines.show_1.run_inference import ShowOnePipeline from huggingface_hub import snapshot_download base_path = snapshot_download( repo_id="showlab/show-1-base", local_dir=os.path.join(MODEL_PATH, "showlab", "show-1-base"), local_dir_use_symlinks = False ) interp_path = snapshot_download( repo_id="showlab/show-1-interpolation", local_dir=os.path.join(MODEL_PATH, "showlab", "show-1-interpolation"), ) deepfloyd_path = snapshot_download( repo_id="DeepFloyd/IF-II-L-v1.0", local_dir=os.path.join(MODEL_PATH, "DeepFloyd/IF-II-L-v1.0"), ) sr1_path = snapshot_download( repo_id="showlab/show-1-sr1", local_dir=os.path.join(MODEL_PATH, "showlab", "show-1-sr1"), ) sr2_path = snapshot_download( repo_id="showlab/show-1-sr2", local_dir=os.path.join(MODEL_PATH, "showlab", "show-1-sr2"), ) self.pipeline = ShowOnePipeline(base_path, interp_path, deepfloyd_path, sr1_path, sr2_path) def infer_one_video(self, prompt: str = None, size: list = [320, 512], seconds: int = 2, fps: int = 8, seed: int = 42): """ Generates a single video based on a textual prompt. The output is a tensor representing the video. Since the initial_num_frames is set to be 8 as shown in paper in the pipeline, we need the (number of frames - 1) divisible by 7 to manage interpolation. Args: prompt (str, optional): The text prompt that guides the video generation. If not specified, the video generation will rely solely on the input image. Defaults to None. size (list, optional): Specifies the resolution of the output video as [height, width]. Defaults to [320, 512]. seconds (int, optional): The duration of the video in seconds. Defaults to 2. fps (int, optional): The number of frames per second in the generated video. This determines how smooth the video appears. Defaults to 8. seed (int, optional): A seed value for random number generation, ensuring reproducibility of the video generation process. Defaults to 42. Returns: torch.Tensor: A tensor representing the generated video, structured as (time, channel, height, width). """ num_frames = fps * seconds assert (num_frames - 1) % 7 == 0 scaling_factor = (num_frames - 1) // 7 video = self.pipeline.inference(prompt=prompt, negative_prompt="", output_size=size, initial_num_frames=8, scaling_factor=scaling_factor, seed=seed) return video