judge-arena / app.py
kaikaidai's picture
Likert-5 by default with Prometheus prompt template
65ba9f3 verified
raw
history blame
36.2 kB
import json
import re
import random
from collections import defaultdict
from datetime import datetime
import hashlib
from dotenv import load_dotenv
load_dotenv()
import gradio as gr
from gen_api_answer import (
get_model_response,
parse_model_response,
prometheus_parse_model_response
)
from random_sample_generation import (
get_random_human_ai_pair,
get_random_human_ai_ground_truth_pair,
generate_ai_response
)
from db import add_vote, create_db_connection, get_votes
from utils import Vote
from common import (
POLICY_CONTENT,
ACKNOWLEDGEMENTS,
CSS_STYLES,
MAIN_TITLE,
HOW_IT_WORKS,
)
from prompts import (
DEFAULT_EVAL_PROMPT,
DEFAULT_EVAL_PROMPT_EDITABLE,
FIXED_EVAL_SUFFIX,
DEFAULT_EVAL_CRITERIA,
DEFAULT_SCORE_1,
DEFAULT_SCORE_2,
DEFAULT_SCORE_3,
DEFAULT_SCORE_4,
DEFAULT_SCORE_5,
)
from leaderboard import (
get_leaderboard,
get_leaderboard_stats,
get_model_rankings,
DEFAULT_ELO,
K_FACTOR
)
elo_scores = defaultdict(lambda: DEFAULT_ELO)
vote_counts = defaultdict(int)
db = create_db_connection()
votes_collection = get_votes(db)
current_time = datetime.now()
# Load the model_data from JSONL
def load_model_data():
model_data = {}
try:
with open("data/models.jsonl", "r") as f:
for line in f:
model = json.loads(line)
model_data[model["name"]] = {
"organization": model["organization"],
"license": model["license"],
"api_model": model["api_model"],
}
except FileNotFoundError:
print("Warning: models.jsonl not found")
return {}
return model_data
model_data = load_model_data()
def store_vote_data(prompt, response_a, response_b, model_a, model_b, winner, judge_id):
prompt_value = prompt.value if hasattr(prompt, 'value') else prompt
vote = Vote(
timestamp=datetime.now().isoformat(),
prompt=prompt_value,
response_a=response_a,
response_b=response_b,
model_a=model_a,
model_b=model_b,
winner=winner,
judge_id=judge_id,
)
add_vote(vote, db)
def parse_variables(prompt):
# Extract variables enclosed in double curly braces
variables = re.findall(r"{{(.*?)}}", prompt)
# Remove duplicates while preserving order
seen = set()
variables = [
x.strip() for x in variables if not (x.strip() in seen or seen.add(x.strip()))
]
return variables
def get_final_prompt(eval_prompt, variable_values):
# Replace variables in the eval prompt with their values
for var, val in variable_values.items():
eval_prompt = eval_prompt.replace("{{" + var + "}}", val)
return eval_prompt
def submit_prompt(eval_prompt, *variable_values):
try:
variables = parse_variables(eval_prompt)
variable_values_dict = {var: val for var, val in zip(variables, variable_values)}
final_prompt = get_final_prompt(eval_prompt, variable_values_dict)
models = list(model_data.keys())
model1, model2 = random.sample(models, 2)
model_a, model_b = (model1, model2) if random.random() < 0.5 else (model2, model1)
response_a = get_model_response(model_a, model_data.get(model_a), final_prompt)
response_b = get_model_response(model_b, model_data.get(model_b), final_prompt)
return (
response_a,
response_b,
gr.update(visible=True),
gr.update(visible=True),
model_a,
model_b,
final_prompt,
)
except Exception as e:
print(f"Error in submit_prompt: {str(e)}")
return (
"Error generating response",
"Error generating response",
gr.update(visible=False),
gr.update(visible=False),
None,
None,
None,
)
def get_ip(request: gr.Request) -> str:
"""Get and hash the IP address from the request."""
if "cf-connecting-ip" in request.headers:
ip = request.headers["cf-connecting-ip"]
elif "x-forwarded-for" in request.headers:
ip = request.headers["x-forwarded-for"]
if "," in ip:
ip = ip.split(",")[0]
else:
ip = request.client.host
# Hash the IP address for privacy
return hashlib.sha256(ip.encode()).hexdigest()[:16]
def get_vote_message(choice: str, model_a: str, model_b: str) -> tuple[str, str]:
"""Generate appropriate message based on vote and model rankings.
Returns (title, message) tuple."""
# Get current rankings
voting_data = get_current_votes()
leaderboard = get_leaderboard(model_data, voting_data, show_preliminary=True)
rankings = get_model_rankings(leaderboard)
pos_a = rankings.get(model_a, 0)
pos_b = rankings.get(model_b, 0)
if choice == "Tie":
return "It's a tie!", "Keep voting responsibly 🤗"
# Check if vote aligns with leaderboard
if (choice == "A" and pos_a < pos_b) or (choice == "B" and pos_b < pos_a):
return "The favourite wins!", "Keep voting responsibly 🤗"
else:
return "The underdog wins!", "Keep voting responsibly 🤗"
def vote(
choice,
model_a,
model_b,
final_prompt,
score_a,
critique_a,
score_b,
critique_b,
request: gr.Request,
):
# Get hashed IP as judge_id
judge_id = get_ip(request)
# Update ELO scores based on user choice
elo_a = elo_scores[model_a]
elo_b = elo_scores[model_b]
# Calculate expected scores
Ea = 1 / (1 + 10 ** ((elo_b - elo_a) / 400))
Eb = 1 / (1 + 10 ** ((elo_a - elo_b) / 400))
# Assign actual scores
if choice == "A":
Sa, Sb = 1, 0
elif choice == "B":
Sa, Sb = 0, 1
else:
Sa, Sb = 0.5, 0.5
# Update scores and vote counts
elo_scores[model_a] += K_FACTOR * (Sa - Ea)
elo_scores[model_b] += K_FACTOR * (Sb - Eb)
vote_counts[model_a] += 1
vote_counts[model_b] += 1
# Format the full responses with score and critique
response_a = f"""{score_a}
{critique_a}"""
response_b = f"""{score_b}
{critique_b}"""
# Store the vote data with the final prompt
store_vote_data(
final_prompt, response_a, response_b, model_a, model_b, choice, judge_id
)
# Get model positions for display
voting_data = get_current_votes()
leaderboard = get_leaderboard(model_data, voting_data, show_preliminary=True)
rankings = get_model_rankings(leaderboard)
pos_a = rankings.get(model_a, 0)
pos_b = rankings.get(model_b, 0)
# Format model names with positions and win/loss indicators
if choice == "Tie":
model_a_display = f"*Model: {model_a} (Position #{pos_a})*"
model_b_display = f"*Model: {model_b} (Position #{pos_b})*"
else:
winner = model_a if choice == "A" else model_b
loser = model_b if choice == "A" else model_a
winner_pos = pos_a if choice == "A" else pos_b
loser_pos = pos_b if choice == "A" else pos_a
model_a_display = f"*Model: {model_a} {'✅' if choice == 'A' else '❌'} (Position #{pos_a})*"
model_b_display = f"*Model: {model_b} {'✅' if choice == 'B' else '❌'} (Position #{pos_b})*"
# Generate vote message
title, message = get_vote_message(choice, model_a, model_b)
return [
gr.update(interactive=False, variant="primary" if choice == "A" else "secondary"), # vote_a
gr.update(interactive=False, variant="primary" if choice == "B" else "secondary"), # vote_b
gr.update(interactive=False, variant="primary" if choice == "Tie" else "secondary"), # vote_tie
gr.update(value=model_a_display), # model_name_a
gr.update(value=model_b_display), # model_name_b
gr.update(interactive=True, value="Regenerate judges", variant="secondary"), # send_btn
gr.update(value="🎲 New round", variant="primary"), # random_btn
gr.Info(message, title=title), # success message
]
def get_current_votes():
"""Get current votes from database."""
return get_votes(db)
# Update the refresh_leaderboard function
def refresh_leaderboard(show_preliminary):
"""Refresh the leaderboard data and stats."""
voting_data = get_current_votes()
leaderboard = get_leaderboard(model_data, voting_data, show_preliminary)
data = [
[
entry["Model"],
float(entry["ELO Score"]),
entry["95% CI"],
entry["# Votes"],
entry["Organization"],
entry["License"],
]
for entry in leaderboard
]
stats = get_leaderboard_stats(model_data, voting_data)
return [gr.update(value=data), gr.update(value=stats)]
# Update the leaderboard table definition in the UI
leaderboard_table = gr.Dataframe(
headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"],
datatype=["str", "number", "str", "number", "str", "str", "str"],
)
def populate_random_example(request: gr.Request, compatible_mode: bool):
"""Generate a random human-AI conversation example and reset judge outputs."""
if compatible_mode:
# Generate all three components when compatible mode is enabled
human_msg, ai_msg, ground_truth_msg = get_random_human_ai_ground_truth_pair()
else:
# Generate only human and AI messages when compatible mode is disabled
human_msg, ai_msg = get_random_human_ai_pair()
ground_truth_msg = ""
return [
gr.update(value=human_msg),
gr.update(value=ai_msg),
gr.update(value="🎲", variant="secondary"), # Reset random button appearance
gr.update(value=""), # Clear score A
gr.update(value=""), # Clear critique A
gr.update(value=""), # Clear score B
gr.update(value=""), # Clear critique B
gr.update(interactive=False, variant="primary"), # Reset vote A
gr.update(interactive=False, variant="primary"), # Reset vote B
gr.update(interactive=False, variant="primary"), # Reset vote tie
gr.update(value="*Model: Hidden*"), # Reset model name A
gr.update(value="*Model: Hidden*"), # Reset model name B
gr.update(value=ground_truth_msg, visible=compatible_mode), # Set ground truth and visibility
]
with gr.Blocks(theme="default", css=CSS_STYLES) as demo:
gr.Markdown(MAIN_TITLE)
gr.Markdown(HOW_IT_WORKS)
# Hidden eval prompt that will always contain DEFAULT_EVAL_PROMPT
eval_prompt = gr.Textbox(
value=DEFAULT_EVAL_PROMPT,
visible=False
)
with gr.Tabs():
with gr.TabItem("Judge Arena"):
with gr.Row():
# Left side - Input section
with gr.Column(scale=1):
with gr.Group():
human_input = gr.TextArea(
label="👩 User Input",
lines=10,
placeholder="Enter the human message here..."
)
with gr.Row():
generate_btn = gr.Button(
"Generate AI Response",
size="sm",
interactive=False
)
ai_response = gr.TextArea(
label="🤖 AI Response",
lines=15,
placeholder="Enter the AI response here..."
)
# Ground truth response (initially hidden)
ground_truth = gr.TextArea(
label="🎯 Ground truth response",
lines=12,
placeholder="Enter the ground truth response here...",
visible=False
)
with gr.Row():
random_btn = gr.Button("🎲", scale=2)
send_btn = gr.Button(
value="Run judges",
variant="primary",
size="lg",
scale=8
)
# Right side - Model outputs
with gr.Column(scale=1):
gr.Markdown("### 👩‍⚖️ Judge A")
with gr.Group():
model_name_a = gr.Markdown("*Model: Hidden*")
with gr.Row():
with gr.Column(scale=1, min_width=100): # Fixed narrow width for score
score_a = gr.Textbox(label="Score", lines=6, interactive=False)
vote_a = gr.Button("Vote A", variant="primary", interactive=False)
with gr.Column(scale=9, min_width=400): # Wider width for critique
critique_a = gr.TextArea(label="Critique", lines=8, interactive=False)
# Tie button row
with gr.Row() as tie_button_row:
with gr.Column():
vote_tie = gr.Button("Tie", variant="primary", interactive=False)
gr.Markdown("### 🧑‍⚖️ Judge B")
with gr.Group():
model_name_b = gr.Markdown("*Model: Hidden*")
with gr.Row():
with gr.Column(scale=1, min_width=100): # Fixed narrow width for score
score_b = gr.Textbox(label="Score", lines=6, interactive=False)
vote_b = gr.Button("Vote B", variant="primary", interactive=False)
with gr.Column(scale=9, min_width=400): # Wider width for critique
critique_b = gr.TextArea(label="Critique", lines=8, interactive=False)
# Place Vote B button directly under Judge B
gr.Markdown("<br>")
# Replace the "Edit Judge Prompt" Accordion section with:
with gr.Accordion("📝 Edit Judge Prompt", open=False) as prompt_accordion:
gr.Markdown("<br>")
use_reference_toggle = gr.Checkbox(
label="Use a reference response",
value=False
)
# Hide the default prompt editor
with gr.Column(visible=False) as default_prompt_editor:
eval_prompt_editable = gr.TextArea(
value=DEFAULT_EVAL_PROMPT_EDITABLE,
label="Evaluation Criteria",
lines=12
)
with gr.Row(visible=False) as edit_buttons_row:
cancel_prompt_btn = gr.Button("Cancel")
save_prompt_btn = gr.Button("Save", variant="primary")
gr.Markdown("*The sample being evaluated is always appended as:*")
gr.Markdown(f"```{FIXED_EVAL_SUFFIX}")
# Show the compatible mode editor
with gr.Column(visible=True) as compatible_prompt_editor:
with gr.Row():
# Left column - Evaluation Criteria
with gr.Column(scale=1):
eval_criteria_text = gr.TextArea(
label="Evaluation Criteria",
lines=12,
value=DEFAULT_EVAL_CRITERIA,
placeholder="Enter the evaluation criteria..."
)
prometheus_reference = gr.Markdown(
"<br> *By default, we use the Prometheus absolute grading prompt template - see [here](https://huggingface.co/prometheus-eval/prometheus-7b-v2.0).*",
visible=True
)
# Right column - Score Descriptions
with gr.Column(scale=1):
score1_description = gr.TextArea(
label="Score 1",
value=DEFAULT_SCORE_1,
placeholder="Description for score 1",
lines=2
)
score2_description = gr.TextArea(
label="Score 2",
value=DEFAULT_SCORE_2,
placeholder="Description for score 2",
lines=2
)
score3_description = gr.TextArea(
label="Score 3",
value=DEFAULT_SCORE_3,
placeholder="Description for score 3",
lines=2
)
score4_description = gr.TextArea(
label="Score 4",
value=DEFAULT_SCORE_4,
placeholder="Description for score 4",
lines=2
)
score5_description = gr.TextArea(
label="Score 5",
value=DEFAULT_SCORE_5,
placeholder="Description for score 5",
lines=2
)
# Add save/cancel buttons for compatible mode
with gr.Row(visible=False) as compatible_edit_buttons_row:
compatible_cancel_btn = gr.Button("Cancel")
compatible_save_btn = gr.Button("Save", variant="primary")
with gr.TabItem("Leaderboard"):
with gr.Row():
with gr.Column(scale=1):
show_preliminary = gr.Checkbox(
label="Reveal preliminary results",
value=True, # Checked by default
info="Show all models, including models with less human ratings (< 500 votes)",
interactive=True
)
stats_display = gr.Markdown()
leaderboard_table = gr.Dataframe(
headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"],
datatype=["str", "number", "str", "number", "str", "str", "str"],
)
gr.Markdown("""<br>
<br>
Judge Arena uses Together AI for inference of open-source models. FP8 models are named as -- "Turbo" where the performance of the FP16 reference models is closely matched:
[*"Together Turbo achieves this performance while maintaining full accuracy compared to Meta's reference implementation across all models. Llama-3.1-405B-Instruct-Turbo matches the accuracy of Meta reference models."*](https://www.together.ai/blog/together-inference-engine-2)
""")
# Add change handler for checkbox
show_preliminary.change(
fn=refresh_leaderboard,
inputs=[show_preliminary],
outputs=[leaderboard_table, stats_display]
)
# Update the load event
demo.load(
fn=refresh_leaderboard,
inputs=[show_preliminary],
outputs=[leaderboard_table, stats_display]
)
with gr.TabItem("Policy"):
gr.Markdown(POLICY_CONTENT)
gr.Markdown(ACKNOWLEDGEMENTS)
# Define state variables for model tracking
model_a_state = gr.State()
model_b_state = gr.State()
final_prompt_state = gr.State()
eval_prompt_previous = gr.State(value=DEFAULT_EVAL_PROMPT_EDITABLE) # Initialize with default value
is_editing = gr.State(False) # Track editing state
compatible_mode_state = gr.State(False) # Track compatible mode state
# Update model names after responses are generated
def update_model_names(model_a, model_b):
return gr.update(value=f"*Model: {model_a}*"), gr.update(
value=f"*Model: {model_b}*"
)
# Store the last submitted prompt and variables for comparison
last_submission = gr.State({})
# Update the vote button click handlers
vote_a.click(
fn=vote,
inputs=[
gr.State("A"),
model_a_state,
model_b_state,
final_prompt_state,
score_a,
critique_a,
score_b,
critique_b,
],
outputs=[
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
send_btn,
random_btn,
gr.State(), # placeholder for success message
],
)
vote_b.click(
fn=vote,
inputs=[
gr.State("B"),
model_a_state,
model_b_state,
final_prompt_state,
score_a,
critique_a,
score_b,
critique_b,
],
outputs=[
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
send_btn,
random_btn,
gr.State(), # placeholder for success message
],
)
vote_tie.click(
fn=vote,
inputs=[
gr.State("Tie"),
model_a_state,
model_b_state,
final_prompt_state,
score_a,
critique_a,
score_b,
critique_b,
],
outputs=[
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
send_btn,
random_btn,
gr.State(), # placeholder for success message
],
)
# Add handlers for save/cancel buttons
def save_prompt(new_prompt, previous_prompt):
return [
gr.update(value=new_prompt), # Update the prompt
new_prompt, # Update the previous prompt state
gr.update(visible=False) # Hide the buttons
]
def cancel_prompt(previous_prompt):
return [
gr.update(value=previous_prompt), # Revert to previous prompt
previous_prompt, # Keep the previous prompt state
gr.update(visible=False) # Hide the buttons
]
def show_edit_buttons(current_value, previous_value):
# Show buttons only if the current value differs from the previous value
return gr.update(visible=current_value != previous_value)
# Add handlers for save/cancel buttons and prompt changes
save_prompt_btn.click(
fn=save_prompt,
inputs=[eval_prompt_editable, eval_prompt_previous],
outputs=[eval_prompt_editable, eval_prompt_previous, edit_buttons_row]
)
cancel_prompt_btn.click(
fn=cancel_prompt,
inputs=[eval_prompt_previous],
outputs=[eval_prompt_editable, eval_prompt_previous, edit_buttons_row]
)
eval_prompt_editable.change(
fn=show_edit_buttons,
inputs=[eval_prompt_editable, eval_prompt_previous],
outputs=edit_buttons_row
)
# Function to toggle visibility based on compatible mode
def toggle_use_reference(checked):
if checked:
# Get new random samples with ground truth when enabling reference mode
human_msg, ai_msg, ground_truth_msg = get_random_human_ai_ground_truth_pair()
return {
ground_truth: gr.update(visible=True, value=ground_truth_msg),
human_input: gr.update(value=human_msg),
ai_response: gr.update(value=ai_msg),
# Reset other UI elements
score_a: gr.update(value=""),
critique_a: gr.update(value=""),
score_b: gr.update(value=""),
critique_b: gr.update(value=""),
vote_a: gr.update(interactive=False, variant="primary"),
vote_b: gr.update(interactive=False, variant="primary"),
vote_tie: gr.update(interactive=False, variant="primary"),
model_name_a: gr.update(value="*Model: Hidden*"),
model_name_b: gr.update(value="*Model: Hidden*"),
random_btn: gr.update(value="🎲", variant="secondary"),
}
else:
# Just hide ground truth when disabling reference mode
return {
ground_truth: gr.update(visible=False)
}
# Update the change handler to include all necessary outputs
use_reference_toggle.change(
fn=toggle_use_reference,
inputs=[use_reference_toggle],
outputs=[
ground_truth,
human_input,
ai_response,
score_a,
critique_a,
score_b,
critique_b,
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
random_btn,
]
)
# Update the submit function to handle different prompts
def submit_and_store(
use_reference,
eval_criteria_text_input,
human_input,
ai_response,
ground_truth_input,
score1_description,
score2_description,
score3_description,
score4_description,
score5_description,
):
# Build prompt data dictionary
prompt_data = {
'human_input': human_input,
'ai_response': ai_response,
'ground_truth_input': ground_truth_input,
'eval_criteria': eval_criteria_text_input,
'score1_desc': score1_description,
'score2_desc': score2_description,
'score3_desc': score3_description,
'score4_desc': score4_description,
'score5_desc': score5_description,
}
models = list(model_data.keys())
model1, model2 = random.sample(models, 2)
model_a, model_b = (model1, model2) if random.random() < 0.5 else (model2, model1)
# Get responses from models
response_a = get_model_response(
model_a,
model_data.get(model_a),
prompt_data,
use_reference=use_reference
)
response_b = get_model_response(
model_b,
model_data.get(model_b),
prompt_data,
use_reference=use_reference
)
# Parse the responses based on model, using Prometheus parsing for Prometheus models and JSON parsing for others
is_prometheus_a = (model_data.get(model_a)['organization'] == 'Prometheus')
is_prometheus_b = (model_data.get(model_b)['organization'] == 'Prometheus')
if is_prometheus_a:
score_a_val, critique_a_val = prometheus_parse_model_response(response_a)
score_a_val = f"{score_a_val} / 5"
else:
score_a_val, critique_a_val = parse_model_response(response_a)
score_a_val = f"{score_a_val} / 5"
if is_prometheus_b:
score_b_val, critique_b_val = prometheus_parse_model_response(response_b)
score_b_val = f"{score_b_val} / 5"
else:
score_b_val, critique_b_val = parse_model_response(response_b)
score_b_val = f"{score_b_val} / 5"
return (
score_a_val,
critique_a_val,
score_b_val,
critique_b_val,
gr.update(interactive=True, variant="primary"), # vote_a
gr.update(interactive=True, variant="primary"), # vote_b
gr.update(interactive=True, variant="primary"), # vote_tie
model_a,
model_b,
eval_prompt,
gr.update(value="*Model: Hidden*"),
gr.update(value="*Model: Hidden*"),
gr.update(value="Regenerate judges", variant="secondary", interactive=True),
gr.update(value="🎲"), # random_btn
)
# Update the click handler to use the editable prompt
send_btn.click(
fn=submit_and_store,
inputs=[
use_reference_toggle,
eval_criteria_text,
human_input,
ai_response,
ground_truth,
score1_description,
score2_description,
score3_description,
score4_description,
score5_description,
],
outputs=[
score_a,
critique_a,
score_b,
critique_b,
vote_a,
vote_b,
vote_tie,
model_a_state,
model_b_state,
final_prompt_state,
model_name_a,
model_name_b,
send_btn,
random_btn,
],
)
# Add random button handler
random_btn.click(
fn=populate_random_example,
inputs=[use_reference_toggle], # Use compatible mode toggle to decide behavior
outputs=[
human_input,
ai_response,
random_btn,
score_a,
critique_a,
score_b,
critique_b,
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
ground_truth, # Set ground truth
]
)
# Add new input change handlers
def handle_input_change():
"""Reset UI state when inputs are changed"""
return [
gr.update(interactive=False), # vote_a
gr.update(interactive=False), # vote_b
gr.update(interactive=False), # vote_tie
gr.update(value="Run judges", variant="primary"), # send_btn
gr.update(value="🎲", variant="secondary"), # random_btn
]
# Update the change handlers for inputs
human_input.change(
fn=handle_input_change,
inputs=[],
outputs=[vote_a, vote_b, vote_tie, send_btn, random_btn]
)
ai_response.change(
fn=handle_input_change,
inputs=[],
outputs=[vote_a, vote_b, vote_tie, send_btn, random_btn]
)
generate_btn.click(
fn=lambda msg: (
generate_ai_response(msg)[0], # Only take the response text
gr.update(
value="Generate AI Response", # Keep the label
interactive=False # Disable the button
)
),
inputs=[human_input],
outputs=[ai_response, generate_btn]
)
human_input.change(
fn=lambda x: gr.update(interactive=bool(x.strip())),
inputs=[human_input],
outputs=[generate_btn]
)
# Update the demo.load to include the random example population
demo.load(
fn=lambda: populate_random_example(None, False), # Pass False for initial compatible_mode
inputs=[],
outputs=[
human_input,
ai_response,
random_btn,
score_a,
critique_a,
score_b,
critique_b,
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
ground_truth,
]
)
# Add new state variables for compatible mode
eval_criteria_previous = gr.State(value=DEFAULT_EVAL_CRITERIA)
score1_previous = gr.State(value=DEFAULT_SCORE_1)
score2_previous = gr.State(value=DEFAULT_SCORE_2)
score3_previous = gr.State(value=DEFAULT_SCORE_3)
score4_previous = gr.State(value=DEFAULT_SCORE_4)
score5_previous = gr.State(value=DEFAULT_SCORE_5)
# Add new functions to handle compatible mode saves/cancels
def save_compatible_prompt(criteria, score1, score2, score3, score4, score5):
return [
gr.update(value=criteria), # Update criteria
criteria, # Update previous criteria state
gr.update(value=score1),
score1,
gr.update(value=score2),
score2,
gr.update(value=score3),
score3,
gr.update(value=score4),
score4,
gr.update(value=score5),
score5,
gr.update(visible=False) # Hide buttons
]
def cancel_compatible_prompt(prev_criteria, prev_score1, prev_score2, prev_score3, prev_score4, prev_score5):
return [
gr.update(value=prev_criteria),
prev_criteria,
gr.update(value=prev_score1),
prev_score1,
gr.update(value=prev_score2),
prev_score2,
gr.update(value=prev_score3),
prev_score3,
gr.update(value=prev_score4),
prev_score4,
gr.update(value=prev_score5),
prev_score5,
gr.update(visible=False)
]
def show_compatible_edit_buttons(*current_values):
previous_values = current_values[1::2] # Get previous values
current_values = current_values[::2] # Get current values
return gr.update(visible=any(curr != prev for curr, prev in zip(current_values, previous_values)))
# Add click handlers for compatible mode buttons
compatible_save_btn.click(
fn=save_compatible_prompt,
inputs=[
eval_criteria_text,
score1_description,
score2_description,
score3_description,
score4_description,
score5_description
],
outputs=[
eval_criteria_text,
eval_criteria_previous,
score1_description,
score1_previous,
score2_description,
score2_previous,
score3_description,
score3_previous,
score4_description,
score4_previous,
score5_description,
score5_previous,
compatible_edit_buttons_row
]
)
compatible_cancel_btn.click(
fn=cancel_compatible_prompt,
inputs=[
eval_criteria_previous,
score1_previous,
score2_previous,
score3_previous,
score4_previous,
score5_previous
],
outputs=[
eval_criteria_text,
eval_criteria_previous,
score1_description,
score1_previous,
score2_description,
score2_previous,
score3_description,
score3_previous,
score4_description,
score4_previous,
score5_description,
score5_previous,
compatible_edit_buttons_row
]
)
# Add change handlers for all compatible mode inputs
for component in [eval_criteria_text, score1_description, score2_description,
score3_description, score4_description, score5_description]:
component.change(
fn=show_compatible_edit_buttons,
inputs=[
eval_criteria_text,
eval_criteria_previous,
score1_description,
score1_previous,
score2_description,
score2_previous,
score3_description,
score3_previous,
score4_description,
score4_previous,
score5_description,
score5_previous
],
outputs=compatible_edit_buttons_row
)
if __name__ == "__main__":
demo.launch()