Spaces:
Running
Running
File size: 36,216 Bytes
dbd97ea 65ba9f3 8863707 0136a5b d4256bf 8bba8de 65ba9f3 8bba8de d4256bf 8bba8de d4256bf 8bba8de 0136a5b 65ba9f3 47e4bdb 8bba8de 0136a5b d4256bf 0136a5b dbd97ea 7af825c 0136a5b 7af825c 0136a5b 7af825c 0136a5b 7af825c 0136a5b 7af825c dbd97ea 65ba9f3 0136a5b 65ba9f3 0136a5b dbd97ea 0136a5b dbd97ea 0136a5b dbd97ea 0136a5b dbd97ea 0136a5b dbd97ea 0136a5b dbd97ea 7af825c dbd97ea 7af825c 0136a5b dbd97ea 0136a5b dbd97ea 0136a5b 8863707 47e4bdb d4256bf 47e4bdb d4256bf 47e4bdb d4256bf 47e4bdb d4256bf 0136a5b be3c6a3 0136a5b 8863707 dbd97ea 0136a5b dbd97ea 0136a5b dbd97ea 7af825c dbd97ea 0136a5b d4256bf 47e4bdb d4256bf 47e4bdb d4256bf 0136a5b d4256bf 47e4bdb d4256bf 47e4bdb 0136a5b dbd97ea 0136a5b 7af825c d4256bf 0136a5b d4256bf dbd97ea 0136a5b dbd97ea 0136a5b dbd97ea 0136a5b 8bba8de d4256bf 8bba8de 36bdd78 d4256bf 8bba8de 36bdd78 00e2ba1 0136a5b 7af825c c29f61a 36bdd78 0136a5b dbd97ea 7af825c 36bdd78 7af825c 36bdd78 47e4bdb d4256bf 36bdd78 d4256bf 36bdd78 d4256bf 36bdd78 8bba8de d4256bf b342f89 d4256bf b342f89 d4256bf b342f89 0136a5b 36bdd78 b342f89 36bdd78 b342f89 36bdd78 23f2441 d4256bf 36bdd78 23f2441 36bdd78 b342f89 d4256bf 36bdd78 d4256bf b342f89 36bdd78 b342f89 36bdd78 b342f89 36bdd78 23f2441 d4256bf 36bdd78 23f2441 8bba8de 36bdd78 dcdb545 8bba8de 65ba9f3 8bba8de 47e4bdb 8bba8de 65ba9f3 8bba8de 65ba9f3 8bba8de 65ba9f3 8bba8de dbd97ea ced5a34 8bba8de ced5a34 7af825c dbd97ea 0136a5b dbd97ea 8bba8de f2d7524 ced5a34 dbd97ea 7af825c 47e4bdb dbd97ea 0136a5b 47e4bdb 8bba8de dbd97ea 0136a5b dbd97ea 8863707 0136a5b d4256bf 0136a5b 36bdd78 d4256bf 0136a5b d4256bf 0136a5b dbd97ea 8863707 0136a5b d4256bf 0136a5b 36bdd78 d4256bf 0136a5b d4256bf 0136a5b dbd97ea 8863707 0136a5b d4256bf 0136a5b 36bdd78 d4256bf 0136a5b d4256bf 0136a5b dbd97ea 47e4bdb 0136a5b 8bba8de 65ba9f3 8bba8de 65ba9f3 8bba8de 65ba9f3 8bba8de 65ba9f3 8bba8de 65ba9f3 8bba8de 65ba9f3 8bba8de 65ba9f3 8bba8de 0136a5b 8bba8de 65ba9f3 8bba8de 0136a5b 8bba8de 65ba9f3 8bba8de 0136a5b 65ba9f3 8bba8de b342f89 65ba9f3 0136a5b dbd97ea 8bba8de d4256bf dbd97ea 65ba9f3 8c60083 8bba8de d4256bf dbd97ea 47e4bdb dbd97ea 8bba8de 65ba9f3 8bba8de dbd97ea 36bdd78 d4256bf dbd97ea 36bdd78 0136a5b 36bdd78 d4256bf 0136a5b dbd97ea 36bdd78 65ba9f3 d4256bf 8bba8de d4256bf 36bdd78 d4256bf 36bdd78 d4256bf 36bdd78 d4256bf 00e2ba1 b342f89 8bba8de b342f89 8bba8de b342f89 8bba8de 0136a5b 8863707 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 |
import json
import re
import random
from collections import defaultdict
from datetime import datetime
import hashlib
from dotenv import load_dotenv
load_dotenv()
import gradio as gr
from gen_api_answer import (
get_model_response,
parse_model_response,
prometheus_parse_model_response
)
from random_sample_generation import (
get_random_human_ai_pair,
get_random_human_ai_ground_truth_pair,
generate_ai_response
)
from db import add_vote, create_db_connection, get_votes
from utils import Vote
from common import (
POLICY_CONTENT,
ACKNOWLEDGEMENTS,
CSS_STYLES,
MAIN_TITLE,
HOW_IT_WORKS,
)
from prompts import (
DEFAULT_EVAL_PROMPT,
DEFAULT_EVAL_PROMPT_EDITABLE,
FIXED_EVAL_SUFFIX,
DEFAULT_EVAL_CRITERIA,
DEFAULT_SCORE_1,
DEFAULT_SCORE_2,
DEFAULT_SCORE_3,
DEFAULT_SCORE_4,
DEFAULT_SCORE_5,
)
from leaderboard import (
get_leaderboard,
get_leaderboard_stats,
get_model_rankings,
DEFAULT_ELO,
K_FACTOR
)
elo_scores = defaultdict(lambda: DEFAULT_ELO)
vote_counts = defaultdict(int)
db = create_db_connection()
votes_collection = get_votes(db)
current_time = datetime.now()
# Load the model_data from JSONL
def load_model_data():
model_data = {}
try:
with open("data/models.jsonl", "r") as f:
for line in f:
model = json.loads(line)
model_data[model["name"]] = {
"organization": model["organization"],
"license": model["license"],
"api_model": model["api_model"],
}
except FileNotFoundError:
print("Warning: models.jsonl not found")
return {}
return model_data
model_data = load_model_data()
def store_vote_data(prompt, response_a, response_b, model_a, model_b, winner, judge_id):
prompt_value = prompt.value if hasattr(prompt, 'value') else prompt
vote = Vote(
timestamp=datetime.now().isoformat(),
prompt=prompt_value,
response_a=response_a,
response_b=response_b,
model_a=model_a,
model_b=model_b,
winner=winner,
judge_id=judge_id,
)
add_vote(vote, db)
def parse_variables(prompt):
# Extract variables enclosed in double curly braces
variables = re.findall(r"{{(.*?)}}", prompt)
# Remove duplicates while preserving order
seen = set()
variables = [
x.strip() for x in variables if not (x.strip() in seen or seen.add(x.strip()))
]
return variables
def get_final_prompt(eval_prompt, variable_values):
# Replace variables in the eval prompt with their values
for var, val in variable_values.items():
eval_prompt = eval_prompt.replace("{{" + var + "}}", val)
return eval_prompt
def submit_prompt(eval_prompt, *variable_values):
try:
variables = parse_variables(eval_prompt)
variable_values_dict = {var: val for var, val in zip(variables, variable_values)}
final_prompt = get_final_prompt(eval_prompt, variable_values_dict)
models = list(model_data.keys())
model1, model2 = random.sample(models, 2)
model_a, model_b = (model1, model2) if random.random() < 0.5 else (model2, model1)
response_a = get_model_response(model_a, model_data.get(model_a), final_prompt)
response_b = get_model_response(model_b, model_data.get(model_b), final_prompt)
return (
response_a,
response_b,
gr.update(visible=True),
gr.update(visible=True),
model_a,
model_b,
final_prompt,
)
except Exception as e:
print(f"Error in submit_prompt: {str(e)}")
return (
"Error generating response",
"Error generating response",
gr.update(visible=False),
gr.update(visible=False),
None,
None,
None,
)
def get_ip(request: gr.Request) -> str:
"""Get and hash the IP address from the request."""
if "cf-connecting-ip" in request.headers:
ip = request.headers["cf-connecting-ip"]
elif "x-forwarded-for" in request.headers:
ip = request.headers["x-forwarded-for"]
if "," in ip:
ip = ip.split(",")[0]
else:
ip = request.client.host
# Hash the IP address for privacy
return hashlib.sha256(ip.encode()).hexdigest()[:16]
def get_vote_message(choice: str, model_a: str, model_b: str) -> tuple[str, str]:
"""Generate appropriate message based on vote and model rankings.
Returns (title, message) tuple."""
# Get current rankings
voting_data = get_current_votes()
leaderboard = get_leaderboard(model_data, voting_data, show_preliminary=True)
rankings = get_model_rankings(leaderboard)
pos_a = rankings.get(model_a, 0)
pos_b = rankings.get(model_b, 0)
if choice == "Tie":
return "It's a tie!", "Keep voting responsibly π€"
# Check if vote aligns with leaderboard
if (choice == "A" and pos_a < pos_b) or (choice == "B" and pos_b < pos_a):
return "The favourite wins!", "Keep voting responsibly π€"
else:
return "The underdog wins!", "Keep voting responsibly π€"
def vote(
choice,
model_a,
model_b,
final_prompt,
score_a,
critique_a,
score_b,
critique_b,
request: gr.Request,
):
# Get hashed IP as judge_id
judge_id = get_ip(request)
# Update ELO scores based on user choice
elo_a = elo_scores[model_a]
elo_b = elo_scores[model_b]
# Calculate expected scores
Ea = 1 / (1 + 10 ** ((elo_b - elo_a) / 400))
Eb = 1 / (1 + 10 ** ((elo_a - elo_b) / 400))
# Assign actual scores
if choice == "A":
Sa, Sb = 1, 0
elif choice == "B":
Sa, Sb = 0, 1
else:
Sa, Sb = 0.5, 0.5
# Update scores and vote counts
elo_scores[model_a] += K_FACTOR * (Sa - Ea)
elo_scores[model_b] += K_FACTOR * (Sb - Eb)
vote_counts[model_a] += 1
vote_counts[model_b] += 1
# Format the full responses with score and critique
response_a = f"""{score_a}
{critique_a}"""
response_b = f"""{score_b}
{critique_b}"""
# Store the vote data with the final prompt
store_vote_data(
final_prompt, response_a, response_b, model_a, model_b, choice, judge_id
)
# Get model positions for display
voting_data = get_current_votes()
leaderboard = get_leaderboard(model_data, voting_data, show_preliminary=True)
rankings = get_model_rankings(leaderboard)
pos_a = rankings.get(model_a, 0)
pos_b = rankings.get(model_b, 0)
# Format model names with positions and win/loss indicators
if choice == "Tie":
model_a_display = f"*Model: {model_a} (Position #{pos_a})*"
model_b_display = f"*Model: {model_b} (Position #{pos_b})*"
else:
winner = model_a if choice == "A" else model_b
loser = model_b if choice == "A" else model_a
winner_pos = pos_a if choice == "A" else pos_b
loser_pos = pos_b if choice == "A" else pos_a
model_a_display = f"*Model: {model_a} {'β
' if choice == 'A' else 'β'} (Position #{pos_a})*"
model_b_display = f"*Model: {model_b} {'β
' if choice == 'B' else 'β'} (Position #{pos_b})*"
# Generate vote message
title, message = get_vote_message(choice, model_a, model_b)
return [
gr.update(interactive=False, variant="primary" if choice == "A" else "secondary"), # vote_a
gr.update(interactive=False, variant="primary" if choice == "B" else "secondary"), # vote_b
gr.update(interactive=False, variant="primary" if choice == "Tie" else "secondary"), # vote_tie
gr.update(value=model_a_display), # model_name_a
gr.update(value=model_b_display), # model_name_b
gr.update(interactive=True, value="Regenerate judges", variant="secondary"), # send_btn
gr.update(value="π² New round", variant="primary"), # random_btn
gr.Info(message, title=title), # success message
]
def get_current_votes():
"""Get current votes from database."""
return get_votes(db)
# Update the refresh_leaderboard function
def refresh_leaderboard(show_preliminary):
"""Refresh the leaderboard data and stats."""
voting_data = get_current_votes()
leaderboard = get_leaderboard(model_data, voting_data, show_preliminary)
data = [
[
entry["Model"],
float(entry["ELO Score"]),
entry["95% CI"],
entry["# Votes"],
entry["Organization"],
entry["License"],
]
for entry in leaderboard
]
stats = get_leaderboard_stats(model_data, voting_data)
return [gr.update(value=data), gr.update(value=stats)]
# Update the leaderboard table definition in the UI
leaderboard_table = gr.Dataframe(
headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"],
datatype=["str", "number", "str", "number", "str", "str", "str"],
)
def populate_random_example(request: gr.Request, compatible_mode: bool):
"""Generate a random human-AI conversation example and reset judge outputs."""
if compatible_mode:
# Generate all three components when compatible mode is enabled
human_msg, ai_msg, ground_truth_msg = get_random_human_ai_ground_truth_pair()
else:
# Generate only human and AI messages when compatible mode is disabled
human_msg, ai_msg = get_random_human_ai_pair()
ground_truth_msg = ""
return [
gr.update(value=human_msg),
gr.update(value=ai_msg),
gr.update(value="π²", variant="secondary"), # Reset random button appearance
gr.update(value=""), # Clear score A
gr.update(value=""), # Clear critique A
gr.update(value=""), # Clear score B
gr.update(value=""), # Clear critique B
gr.update(interactive=False, variant="primary"), # Reset vote A
gr.update(interactive=False, variant="primary"), # Reset vote B
gr.update(interactive=False, variant="primary"), # Reset vote tie
gr.update(value="*Model: Hidden*"), # Reset model name A
gr.update(value="*Model: Hidden*"), # Reset model name B
gr.update(value=ground_truth_msg, visible=compatible_mode), # Set ground truth and visibility
]
with gr.Blocks(theme="default", css=CSS_STYLES) as demo:
gr.Markdown(MAIN_TITLE)
gr.Markdown(HOW_IT_WORKS)
# Hidden eval prompt that will always contain DEFAULT_EVAL_PROMPT
eval_prompt = gr.Textbox(
value=DEFAULT_EVAL_PROMPT,
visible=False
)
with gr.Tabs():
with gr.TabItem("Judge Arena"):
with gr.Row():
# Left side - Input section
with gr.Column(scale=1):
with gr.Group():
human_input = gr.TextArea(
label="π© User Input",
lines=10,
placeholder="Enter the human message here..."
)
with gr.Row():
generate_btn = gr.Button(
"Generate AI Response",
size="sm",
interactive=False
)
ai_response = gr.TextArea(
label="π€ AI Response",
lines=15,
placeholder="Enter the AI response here..."
)
# Ground truth response (initially hidden)
ground_truth = gr.TextArea(
label="π― Ground truth response",
lines=12,
placeholder="Enter the ground truth response here...",
visible=False
)
with gr.Row():
random_btn = gr.Button("π²", scale=2)
send_btn = gr.Button(
value="Run judges",
variant="primary",
size="lg",
scale=8
)
# Right side - Model outputs
with gr.Column(scale=1):
gr.Markdown("### π©ββοΈ Judge A")
with gr.Group():
model_name_a = gr.Markdown("*Model: Hidden*")
with gr.Row():
with gr.Column(scale=1, min_width=100): # Fixed narrow width for score
score_a = gr.Textbox(label="Score", lines=6, interactive=False)
vote_a = gr.Button("Vote A", variant="primary", interactive=False)
with gr.Column(scale=9, min_width=400): # Wider width for critique
critique_a = gr.TextArea(label="Critique", lines=8, interactive=False)
# Tie button row
with gr.Row() as tie_button_row:
with gr.Column():
vote_tie = gr.Button("Tie", variant="primary", interactive=False)
gr.Markdown("### π§ββοΈ Judge B")
with gr.Group():
model_name_b = gr.Markdown("*Model: Hidden*")
with gr.Row():
with gr.Column(scale=1, min_width=100): # Fixed narrow width for score
score_b = gr.Textbox(label="Score", lines=6, interactive=False)
vote_b = gr.Button("Vote B", variant="primary", interactive=False)
with gr.Column(scale=9, min_width=400): # Wider width for critique
critique_b = gr.TextArea(label="Critique", lines=8, interactive=False)
# Place Vote B button directly under Judge B
gr.Markdown("<br>")
# Replace the "Edit Judge Prompt" Accordion section with:
with gr.Accordion("π Edit Judge Prompt", open=False) as prompt_accordion:
gr.Markdown("<br>")
use_reference_toggle = gr.Checkbox(
label="Use a reference response",
value=False
)
# Hide the default prompt editor
with gr.Column(visible=False) as default_prompt_editor:
eval_prompt_editable = gr.TextArea(
value=DEFAULT_EVAL_PROMPT_EDITABLE,
label="Evaluation Criteria",
lines=12
)
with gr.Row(visible=False) as edit_buttons_row:
cancel_prompt_btn = gr.Button("Cancel")
save_prompt_btn = gr.Button("Save", variant="primary")
gr.Markdown("*The sample being evaluated is always appended as:*")
gr.Markdown(f"```{FIXED_EVAL_SUFFIX}")
# Show the compatible mode editor
with gr.Column(visible=True) as compatible_prompt_editor:
with gr.Row():
# Left column - Evaluation Criteria
with gr.Column(scale=1):
eval_criteria_text = gr.TextArea(
label="Evaluation Criteria",
lines=12,
value=DEFAULT_EVAL_CRITERIA,
placeholder="Enter the evaluation criteria..."
)
prometheus_reference = gr.Markdown(
"<br> *By default, we use the Prometheus absolute grading prompt template - see [here](https://huggingface.co/prometheus-eval/prometheus-7b-v2.0).*",
visible=True
)
# Right column - Score Descriptions
with gr.Column(scale=1):
score1_description = gr.TextArea(
label="Score 1",
value=DEFAULT_SCORE_1,
placeholder="Description for score 1",
lines=2
)
score2_description = gr.TextArea(
label="Score 2",
value=DEFAULT_SCORE_2,
placeholder="Description for score 2",
lines=2
)
score3_description = gr.TextArea(
label="Score 3",
value=DEFAULT_SCORE_3,
placeholder="Description for score 3",
lines=2
)
score4_description = gr.TextArea(
label="Score 4",
value=DEFAULT_SCORE_4,
placeholder="Description for score 4",
lines=2
)
score5_description = gr.TextArea(
label="Score 5",
value=DEFAULT_SCORE_5,
placeholder="Description for score 5",
lines=2
)
# Add save/cancel buttons for compatible mode
with gr.Row(visible=False) as compatible_edit_buttons_row:
compatible_cancel_btn = gr.Button("Cancel")
compatible_save_btn = gr.Button("Save", variant="primary")
with gr.TabItem("Leaderboard"):
with gr.Row():
with gr.Column(scale=1):
show_preliminary = gr.Checkbox(
label="Reveal preliminary results",
value=True, # Checked by default
info="Show all models, including models with less human ratings (< 500 votes)",
interactive=True
)
stats_display = gr.Markdown()
leaderboard_table = gr.Dataframe(
headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"],
datatype=["str", "number", "str", "number", "str", "str", "str"],
)
gr.Markdown("""<br>
<br>
Judge Arena uses Together AI for inference of open-source models. FP8 models are named as -- "Turbo" where the performance of the FP16 reference models is closely matched:
[*"Together Turbo achieves this performance while maintaining full accuracy compared to Meta's reference implementation across all models. Llama-3.1-405B-Instruct-Turbo matches the accuracy of Meta reference models."*](https://www.together.ai/blog/together-inference-engine-2)
""")
# Add change handler for checkbox
show_preliminary.change(
fn=refresh_leaderboard,
inputs=[show_preliminary],
outputs=[leaderboard_table, stats_display]
)
# Update the load event
demo.load(
fn=refresh_leaderboard,
inputs=[show_preliminary],
outputs=[leaderboard_table, stats_display]
)
with gr.TabItem("Policy"):
gr.Markdown(POLICY_CONTENT)
gr.Markdown(ACKNOWLEDGEMENTS)
# Define state variables for model tracking
model_a_state = gr.State()
model_b_state = gr.State()
final_prompt_state = gr.State()
eval_prompt_previous = gr.State(value=DEFAULT_EVAL_PROMPT_EDITABLE) # Initialize with default value
is_editing = gr.State(False) # Track editing state
compatible_mode_state = gr.State(False) # Track compatible mode state
# Update model names after responses are generated
def update_model_names(model_a, model_b):
return gr.update(value=f"*Model: {model_a}*"), gr.update(
value=f"*Model: {model_b}*"
)
# Store the last submitted prompt and variables for comparison
last_submission = gr.State({})
# Update the vote button click handlers
vote_a.click(
fn=vote,
inputs=[
gr.State("A"),
model_a_state,
model_b_state,
final_prompt_state,
score_a,
critique_a,
score_b,
critique_b,
],
outputs=[
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
send_btn,
random_btn,
gr.State(), # placeholder for success message
],
)
vote_b.click(
fn=vote,
inputs=[
gr.State("B"),
model_a_state,
model_b_state,
final_prompt_state,
score_a,
critique_a,
score_b,
critique_b,
],
outputs=[
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
send_btn,
random_btn,
gr.State(), # placeholder for success message
],
)
vote_tie.click(
fn=vote,
inputs=[
gr.State("Tie"),
model_a_state,
model_b_state,
final_prompt_state,
score_a,
critique_a,
score_b,
critique_b,
],
outputs=[
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
send_btn,
random_btn,
gr.State(), # placeholder for success message
],
)
# Add handlers for save/cancel buttons
def save_prompt(new_prompt, previous_prompt):
return [
gr.update(value=new_prompt), # Update the prompt
new_prompt, # Update the previous prompt state
gr.update(visible=False) # Hide the buttons
]
def cancel_prompt(previous_prompt):
return [
gr.update(value=previous_prompt), # Revert to previous prompt
previous_prompt, # Keep the previous prompt state
gr.update(visible=False) # Hide the buttons
]
def show_edit_buttons(current_value, previous_value):
# Show buttons only if the current value differs from the previous value
return gr.update(visible=current_value != previous_value)
# Add handlers for save/cancel buttons and prompt changes
save_prompt_btn.click(
fn=save_prompt,
inputs=[eval_prompt_editable, eval_prompt_previous],
outputs=[eval_prompt_editable, eval_prompt_previous, edit_buttons_row]
)
cancel_prompt_btn.click(
fn=cancel_prompt,
inputs=[eval_prompt_previous],
outputs=[eval_prompt_editable, eval_prompt_previous, edit_buttons_row]
)
eval_prompt_editable.change(
fn=show_edit_buttons,
inputs=[eval_prompt_editable, eval_prompt_previous],
outputs=edit_buttons_row
)
# Function to toggle visibility based on compatible mode
def toggle_use_reference(checked):
if checked:
# Get new random samples with ground truth when enabling reference mode
human_msg, ai_msg, ground_truth_msg = get_random_human_ai_ground_truth_pair()
return {
ground_truth: gr.update(visible=True, value=ground_truth_msg),
human_input: gr.update(value=human_msg),
ai_response: gr.update(value=ai_msg),
# Reset other UI elements
score_a: gr.update(value=""),
critique_a: gr.update(value=""),
score_b: gr.update(value=""),
critique_b: gr.update(value=""),
vote_a: gr.update(interactive=False, variant="primary"),
vote_b: gr.update(interactive=False, variant="primary"),
vote_tie: gr.update(interactive=False, variant="primary"),
model_name_a: gr.update(value="*Model: Hidden*"),
model_name_b: gr.update(value="*Model: Hidden*"),
random_btn: gr.update(value="π²", variant="secondary"),
}
else:
# Just hide ground truth when disabling reference mode
return {
ground_truth: gr.update(visible=False)
}
# Update the change handler to include all necessary outputs
use_reference_toggle.change(
fn=toggle_use_reference,
inputs=[use_reference_toggle],
outputs=[
ground_truth,
human_input,
ai_response,
score_a,
critique_a,
score_b,
critique_b,
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
random_btn,
]
)
# Update the submit function to handle different prompts
def submit_and_store(
use_reference,
eval_criteria_text_input,
human_input,
ai_response,
ground_truth_input,
score1_description,
score2_description,
score3_description,
score4_description,
score5_description,
):
# Build prompt data dictionary
prompt_data = {
'human_input': human_input,
'ai_response': ai_response,
'ground_truth_input': ground_truth_input,
'eval_criteria': eval_criteria_text_input,
'score1_desc': score1_description,
'score2_desc': score2_description,
'score3_desc': score3_description,
'score4_desc': score4_description,
'score5_desc': score5_description,
}
models = list(model_data.keys())
model1, model2 = random.sample(models, 2)
model_a, model_b = (model1, model2) if random.random() < 0.5 else (model2, model1)
# Get responses from models
response_a = get_model_response(
model_a,
model_data.get(model_a),
prompt_data,
use_reference=use_reference
)
response_b = get_model_response(
model_b,
model_data.get(model_b),
prompt_data,
use_reference=use_reference
)
# Parse the responses based on model, using Prometheus parsing for Prometheus models and JSON parsing for others
is_prometheus_a = (model_data.get(model_a)['organization'] == 'Prometheus')
is_prometheus_b = (model_data.get(model_b)['organization'] == 'Prometheus')
if is_prometheus_a:
score_a_val, critique_a_val = prometheus_parse_model_response(response_a)
score_a_val = f"{score_a_val} / 5"
else:
score_a_val, critique_a_val = parse_model_response(response_a)
score_a_val = f"{score_a_val} / 5"
if is_prometheus_b:
score_b_val, critique_b_val = prometheus_parse_model_response(response_b)
score_b_val = f"{score_b_val} / 5"
else:
score_b_val, critique_b_val = parse_model_response(response_b)
score_b_val = f"{score_b_val} / 5"
return (
score_a_val,
critique_a_val,
score_b_val,
critique_b_val,
gr.update(interactive=True, variant="primary"), # vote_a
gr.update(interactive=True, variant="primary"), # vote_b
gr.update(interactive=True, variant="primary"), # vote_tie
model_a,
model_b,
eval_prompt,
gr.update(value="*Model: Hidden*"),
gr.update(value="*Model: Hidden*"),
gr.update(value="Regenerate judges", variant="secondary", interactive=True),
gr.update(value="π²"), # random_btn
)
# Update the click handler to use the editable prompt
send_btn.click(
fn=submit_and_store,
inputs=[
use_reference_toggle,
eval_criteria_text,
human_input,
ai_response,
ground_truth,
score1_description,
score2_description,
score3_description,
score4_description,
score5_description,
],
outputs=[
score_a,
critique_a,
score_b,
critique_b,
vote_a,
vote_b,
vote_tie,
model_a_state,
model_b_state,
final_prompt_state,
model_name_a,
model_name_b,
send_btn,
random_btn,
],
)
# Add random button handler
random_btn.click(
fn=populate_random_example,
inputs=[use_reference_toggle], # Use compatible mode toggle to decide behavior
outputs=[
human_input,
ai_response,
random_btn,
score_a,
critique_a,
score_b,
critique_b,
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
ground_truth, # Set ground truth
]
)
# Add new input change handlers
def handle_input_change():
"""Reset UI state when inputs are changed"""
return [
gr.update(interactive=False), # vote_a
gr.update(interactive=False), # vote_b
gr.update(interactive=False), # vote_tie
gr.update(value="Run judges", variant="primary"), # send_btn
gr.update(value="π²", variant="secondary"), # random_btn
]
# Update the change handlers for inputs
human_input.change(
fn=handle_input_change,
inputs=[],
outputs=[vote_a, vote_b, vote_tie, send_btn, random_btn]
)
ai_response.change(
fn=handle_input_change,
inputs=[],
outputs=[vote_a, vote_b, vote_tie, send_btn, random_btn]
)
generate_btn.click(
fn=lambda msg: (
generate_ai_response(msg)[0], # Only take the response text
gr.update(
value="Generate AI Response", # Keep the label
interactive=False # Disable the button
)
),
inputs=[human_input],
outputs=[ai_response, generate_btn]
)
human_input.change(
fn=lambda x: gr.update(interactive=bool(x.strip())),
inputs=[human_input],
outputs=[generate_btn]
)
# Update the demo.load to include the random example population
demo.load(
fn=lambda: populate_random_example(None, False), # Pass False for initial compatible_mode
inputs=[],
outputs=[
human_input,
ai_response,
random_btn,
score_a,
critique_a,
score_b,
critique_b,
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
ground_truth,
]
)
# Add new state variables for compatible mode
eval_criteria_previous = gr.State(value=DEFAULT_EVAL_CRITERIA)
score1_previous = gr.State(value=DEFAULT_SCORE_1)
score2_previous = gr.State(value=DEFAULT_SCORE_2)
score3_previous = gr.State(value=DEFAULT_SCORE_3)
score4_previous = gr.State(value=DEFAULT_SCORE_4)
score5_previous = gr.State(value=DEFAULT_SCORE_5)
# Add new functions to handle compatible mode saves/cancels
def save_compatible_prompt(criteria, score1, score2, score3, score4, score5):
return [
gr.update(value=criteria), # Update criteria
criteria, # Update previous criteria state
gr.update(value=score1),
score1,
gr.update(value=score2),
score2,
gr.update(value=score3),
score3,
gr.update(value=score4),
score4,
gr.update(value=score5),
score5,
gr.update(visible=False) # Hide buttons
]
def cancel_compatible_prompt(prev_criteria, prev_score1, prev_score2, prev_score3, prev_score4, prev_score5):
return [
gr.update(value=prev_criteria),
prev_criteria,
gr.update(value=prev_score1),
prev_score1,
gr.update(value=prev_score2),
prev_score2,
gr.update(value=prev_score3),
prev_score3,
gr.update(value=prev_score4),
prev_score4,
gr.update(value=prev_score5),
prev_score5,
gr.update(visible=False)
]
def show_compatible_edit_buttons(*current_values):
previous_values = current_values[1::2] # Get previous values
current_values = current_values[::2] # Get current values
return gr.update(visible=any(curr != prev for curr, prev in zip(current_values, previous_values)))
# Add click handlers for compatible mode buttons
compatible_save_btn.click(
fn=save_compatible_prompt,
inputs=[
eval_criteria_text,
score1_description,
score2_description,
score3_description,
score4_description,
score5_description
],
outputs=[
eval_criteria_text,
eval_criteria_previous,
score1_description,
score1_previous,
score2_description,
score2_previous,
score3_description,
score3_previous,
score4_description,
score4_previous,
score5_description,
score5_previous,
compatible_edit_buttons_row
]
)
compatible_cancel_btn.click(
fn=cancel_compatible_prompt,
inputs=[
eval_criteria_previous,
score1_previous,
score2_previous,
score3_previous,
score4_previous,
score5_previous
],
outputs=[
eval_criteria_text,
eval_criteria_previous,
score1_description,
score1_previous,
score2_description,
score2_previous,
score3_description,
score3_previous,
score4_description,
score4_previous,
score5_description,
score5_previous,
compatible_edit_buttons_row
]
)
# Add change handlers for all compatible mode inputs
for component in [eval_criteria_text, score1_description, score2_description,
score3_description, score4_description, score5_description]:
component.change(
fn=show_compatible_edit_buttons,
inputs=[
eval_criteria_text,
eval_criteria_previous,
score1_description,
score1_previous,
score2_description,
score2_previous,
score3_description,
score3_previous,
score4_description,
score4_previous,
score5_description,
score5_previous
],
outputs=compatible_edit_buttons_row
)
if __name__ == "__main__":
demo.launch() |