File size: 10,650 Bytes
f14265e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import gradio as gr
import librosa
import numpy as np
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
import torch
from speechbrain.inference.speaker import EncoderClassifier
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import plotly.graph_objects as go
from sklearn.preprocessing import normalize
import os
from cryptography.fernet import Fernet
import pickle
# --- Configuration using Environment Variables ---
encrypted_file_path = os.environ.get("SPEAKER_EMBEDDINGS_FILE")
metadata_file = os.environ.get("METADATA_FILE")
visualization_method = os.environ.get("VISUALIZATION_METHOD", "pca")
max_length = 5 * 16000
num_closest_speakers = 20
pca_dim = 50
# --- Check for Missing Environment Variables ---
if not encrypted_file_path:
raise ValueError("SPEAKER_EMBEDDINGS_FILE environment variable is not set.")
if not metadata_file:
raise ValueError("METADATA_FILE environment variable is not set.")
# --- Check for valid visualization method ---
if visualization_method not in ["pca", "tsne"]:
raise ValueError("Invalid VISUALIZATION_METHOD. Choose 'pca' or 'tsne'.")
# --- Debugging: Check Environment Variables ---
print(f"DECRYPTION_KEY: {os.getenv('DECRYPTION_KEY')}")
print(f"SPEAKER_EMBEDDINGS_FILE: {os.getenv('SPEAKER_EMBEDDINGS_FILE')}")
if os.getenv('SPEAKER_EMBEDDINGS_FILE'):
print(
f"Encrypted file path exists: {os.path.exists(os.getenv('SPEAKER_EMBEDDINGS_FILE'))}"
)
else:
print(
"Encrypted file path does not exist: SPEAKER_EMBEDDINGS_FILE environment variable not set or file not found."
)
# --- Decryption ---
key = os.getenv("DECRYPTION_KEY")
if not key:
raise ValueError(
"Decryption key is missing. Ensure DECRYPTION_KEY is set in the environment variables."
)
fernet = Fernet(key.encode("utf-8"))
# --- Sample Audio Files ---
sample_audio_dir = "sample_audio"
sample_audio_files = [
"Bob_Barker.mp3",
"Howie_Mandel.m4a",
"Katherine_Jenkins.mp3",
]
# --- Load Embeddings and Metadata ---
try:
with open(encrypted_file_path, "rb") as encrypted_file:
encrypted_data = encrypted_file.read()
decrypted_data_bytes = fernet.decrypt(encrypted_data)
# Deserialize using pickle.loads()
speaker_embeddings = pickle.loads(decrypted_data_bytes)
print("Speaker embeddings loaded successfully!")
except FileNotFoundError:
raise FileNotFoundError(
f"Could not find encrypted embeddings file at: {encrypted_file_path}"
)
except Exception as e:
raise Exception(f"Error during decryption or loading embeddings: {e}")
df = pd.read_csv(metadata_file, delimiter="\t")
# --- Convert Embeddings to NumPy Arrays ---
for spk_id, embeddings in speaker_embeddings.items():
speaker_embeddings[spk_id] = [np.array(embedding) for embedding in embeddings]
# --- Speaker ID to Name Mapping ---
speaker_id_to_name = dict(zip(df["VoxCeleb1 ID"], df["VGGFace1 ID"]))
# --- Load SpeechBrain Classifier ---
classifier = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-xvect-voxceleb",
savedir="pretrained_models/spkrec-xvect-voxceleb",
)
# --- Function to Calculate Average Embedding (Centroid) ---
def calculate_average_embedding(embeddings):
avg_embedding = np.mean(embeddings, axis=0)
return normalize(avg_embedding.reshape(1, -1)).flatten()
# --- Precompute Speaker Centroids ---
speaker_centroids = {
spk_id: calculate_average_embedding(embeddings)
for spk_id, embeddings in speaker_embeddings.items()
}
# --- Function to Prepare Data for Visualization ---
def prepare_data_for_visualization(speaker_centroids, closest_speaker_ids):
all_embeddings = [
centroid
for speaker_id, centroid in speaker_centroids.items()
if speaker_id in closest_speaker_ids
]
all_speaker_ids = [
speaker_id
for speaker_id in speaker_centroids
if speaker_id in closest_speaker_ids
]
return np.array(all_embeddings), np.array(all_speaker_ids)
# --- Function to Reduce Dimensionality ---
def reduce_dimensionality(all_embeddings, method="tsne", perplexity=5, pca_dim=50):
if method == "pca":
reducer = PCA(n_components=2)
elif method == "tsne":
pca_reducer = PCA(n_components=pca_dim)
all_embeddings = pca_reducer.fit_transform(all_embeddings)
reducer = TSNE(n_components=2, random_state=42, perplexity=perplexity)
else:
raise ValueError("Invalid method. Choose 'pca' or 'tsne'.")
reduced_embeddings = reducer.fit_transform(all_embeddings)
return reducer, reduced_embeddings
# --- Function to Get Speaker Name from ID ---
def get_speaker_name(speaker_id):
return speaker_id_to_name.get(speaker_id, f"Unknown ({speaker_id})")
# --- Function to Generate Visualization ---
def generate_visualization(
pca_reducer,
reduced_embeddings,
all_speaker_ids,
new_embedding,
predicted_speaker_id,
visualization_method,
perplexity,
pca_dim,
):
if visualization_method == "pca":
new_embedding_reduced = pca_reducer.transform(new_embedding.reshape(1, -1))
elif visualization_method == "tsne":
combined_embeddings = np.vstack(
[reduced_embeddings, new_embedding.reshape(1, -1)]
)
reducer = TSNE(n_components=2, random_state=42, perplexity=perplexity)
combined_reduced = reducer.fit_transform(combined_embeddings)
reduced_embeddings = combined_reduced[:-1]
new_embedding_reduced = combined_reduced[-1].reshape(1, -1)
else:
raise ValueError("Invalid visualization method.")
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=reduced_embeddings[:, 0],
y=reduced_embeddings[:, 1],
mode="markers",
marker=dict(color="blue", size=8, opacity=0.5),
text=[get_speaker_name(speaker_id) for speaker_id in all_speaker_ids],
name="Other Speakers",
)
)
if predicted_speaker_id in all_speaker_ids:
predicted_speaker_index = list(all_speaker_ids).index(predicted_speaker_id)
fig.add_trace(
go.Scatter(
x=[reduced_embeddings[predicted_speaker_index, 0]],
y=[reduced_embeddings[predicted_speaker_index, 1]],
mode="markers",
marker=dict(
color="green",
size=10,
symbol="circle",
line=dict(color="black", width=2),
),
name=get_speaker_name(predicted_speaker_id),
text=[get_speaker_name(predicted_speaker_id)],
)
)
fig.add_trace(
go.Scatter(
x=new_embedding_reduced[:, 0],
y=new_embedding_reduced[:, 1],
mode="markers",
marker=dict(color="red", size=12, symbol="star"),
name="New Voice",
text=["New Voice"],
)
)
fig.update_layout(
title=f"Dimensionality Reduction of Speaker Embeddings using {visualization_method.upper()}",
xaxis_title="Component 1",
yaxis_title="Component 2",
legend=dict(x=0, y=1, traceorder="normal", orientation="h"),
hovermode="closest",
)
return fig
# --- Main Function ---
def identify_voice_and_visualize_with_averaging(audio_file, perplexity=5):
try:
if isinstance(audio_file, str):
signal, fs = librosa.load(audio_file, sr=16000)
elif isinstance(audio_file, np.ndarray):
signal = audio_file
fs = 16000
else:
raise ValueError(
"Invalid audio input. Must be a file path or a NumPy array."
)
signal_tensor = torch.tensor(signal, dtype=torch.float32).unsqueeze(0)
signal_tensor = torch.nn.functional.pad(
signal_tensor, (0, max_length - signal_tensor.shape[1])
)
user_embedding = classifier.encode_batch(signal_tensor).cpu().detach().numpy()
user_embedding = normalize(
user_embedding.squeeze(axis=(0, 1)).reshape(1, -1)
).flatten()
similarity_scores = {
spk_id: cosine_similarity(
user_embedding.reshape(1, -1), centroid.reshape(1, -1)
)[0][0]
for spk_id, centroid in speaker_centroids.items()
}
closest_speaker_ids = sorted(
similarity_scores, key=similarity_scores.get, reverse=True
)[:num_closest_speakers]
predicted_speaker_id = closest_speaker_ids[0]
highest_similarity = similarity_scores[predicted_speaker_id]
all_embeddings, all_speaker_ids = prepare_data_for_visualization(
speaker_centroids, closest_speaker_ids
)
reducer, reduced_embeddings = reduce_dimensionality(
all_embeddings,
method=visualization_method,
perplexity=perplexity,
pca_dim=pca_dim,
)
predicted_speaker_name = get_speaker_name(predicted_speaker_id)
similarity_percentage = round(highest_similarity * 100, 2) # Rounded here
visualization = generate_visualization(
reducer,
reduced_embeddings,
all_speaker_ids,
user_embedding,
predicted_speaker_id,
visualization_method,
perplexity,
pca_dim,
)
result_text = (
f"The voice resembles speaker: {predicted_speaker_name} "
f"with a similarity of {similarity_percentage:.2f}%" # Display rounded value
)
return result_text, visualization
except Exception as e:
return f"Error during processing: {e}", None
# --- Gradio Interface ---
# Create a directory for caching examples if it doesn't exist
cache_dir = "examples_cache"
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
# Define the Gradio interface
iface = gr.Interface(
fn=identify_voice_and_visualize_with_averaging,
inputs=gr.Audio(type="filepath", label="Input Audio"),
outputs=["text", gr.Plot()],
title="Discover Your Celebrity Voice Twin!",
description="Record your voice or upload an audio file, and see your celebrity match! Not ready to record? Try our sample voices to see how it works!",
cache_examples=False,
examples_per_page=3,
examples=[
[os.path.join(sample_audio_dir, sample_audio_files[0])],
[os.path.join(sample_audio_dir, sample_audio_files[1])],
[os.path.join(sample_audio_dir, sample_audio_files[2])],
],
)
# Launch the interface
iface.launch(debug=True, share=True) |