NitishBorthakur
commited on
Commit
•
f14265e
1
Parent(s):
931ac37
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import librosa
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
import torch
|
7 |
+
from speechbrain.inference.speaker import EncoderClassifier
|
8 |
+
from sklearn.decomposition import PCA
|
9 |
+
from sklearn.manifold import TSNE
|
10 |
+
import plotly.graph_objects as go
|
11 |
+
from sklearn.preprocessing import normalize
|
12 |
+
import os
|
13 |
+
from cryptography.fernet import Fernet
|
14 |
+
import pickle
|
15 |
+
|
16 |
+
# --- Configuration using Environment Variables ---
|
17 |
+
encrypted_file_path = os.environ.get("SPEAKER_EMBEDDINGS_FILE")
|
18 |
+
metadata_file = os.environ.get("METADATA_FILE")
|
19 |
+
visualization_method = os.environ.get("VISUALIZATION_METHOD", "pca")
|
20 |
+
max_length = 5 * 16000
|
21 |
+
num_closest_speakers = 20
|
22 |
+
pca_dim = 50
|
23 |
+
|
24 |
+
# --- Check for Missing Environment Variables ---
|
25 |
+
if not encrypted_file_path:
|
26 |
+
raise ValueError("SPEAKER_EMBEDDINGS_FILE environment variable is not set.")
|
27 |
+
if not metadata_file:
|
28 |
+
raise ValueError("METADATA_FILE environment variable is not set.")
|
29 |
+
# --- Check for valid visualization method ---
|
30 |
+
if visualization_method not in ["pca", "tsne"]:
|
31 |
+
raise ValueError("Invalid VISUALIZATION_METHOD. Choose 'pca' or 'tsne'.")
|
32 |
+
|
33 |
+
# --- Debugging: Check Environment Variables ---
|
34 |
+
print(f"DECRYPTION_KEY: {os.getenv('DECRYPTION_KEY')}")
|
35 |
+
print(f"SPEAKER_EMBEDDINGS_FILE: {os.getenv('SPEAKER_EMBEDDINGS_FILE')}")
|
36 |
+
if os.getenv('SPEAKER_EMBEDDINGS_FILE'):
|
37 |
+
print(
|
38 |
+
f"Encrypted file path exists: {os.path.exists(os.getenv('SPEAKER_EMBEDDINGS_FILE'))}"
|
39 |
+
)
|
40 |
+
else:
|
41 |
+
print(
|
42 |
+
"Encrypted file path does not exist: SPEAKER_EMBEDDINGS_FILE environment variable not set or file not found."
|
43 |
+
)
|
44 |
+
|
45 |
+
# --- Decryption ---
|
46 |
+
key = os.getenv("DECRYPTION_KEY")
|
47 |
+
if not key:
|
48 |
+
raise ValueError(
|
49 |
+
"Decryption key is missing. Ensure DECRYPTION_KEY is set in the environment variables."
|
50 |
+
)
|
51 |
+
|
52 |
+
fernet = Fernet(key.encode("utf-8"))
|
53 |
+
|
54 |
+
# --- Sample Audio Files ---
|
55 |
+
sample_audio_dir = "sample_audio"
|
56 |
+
sample_audio_files = [
|
57 |
+
"Bob_Barker.mp3",
|
58 |
+
"Howie_Mandel.m4a",
|
59 |
+
"Katherine_Jenkins.mp3",
|
60 |
+
]
|
61 |
+
|
62 |
+
# --- Load Embeddings and Metadata ---
|
63 |
+
try:
|
64 |
+
with open(encrypted_file_path, "rb") as encrypted_file:
|
65 |
+
encrypted_data = encrypted_file.read()
|
66 |
+
|
67 |
+
decrypted_data_bytes = fernet.decrypt(encrypted_data)
|
68 |
+
|
69 |
+
# Deserialize using pickle.loads()
|
70 |
+
speaker_embeddings = pickle.loads(decrypted_data_bytes)
|
71 |
+
|
72 |
+
print("Speaker embeddings loaded successfully!")
|
73 |
+
|
74 |
+
except FileNotFoundError:
|
75 |
+
raise FileNotFoundError(
|
76 |
+
f"Could not find encrypted embeddings file at: {encrypted_file_path}"
|
77 |
+
)
|
78 |
+
except Exception as e:
|
79 |
+
raise Exception(f"Error during decryption or loading embeddings: {e}")
|
80 |
+
|
81 |
+
df = pd.read_csv(metadata_file, delimiter="\t")
|
82 |
+
|
83 |
+
# --- Convert Embeddings to NumPy Arrays ---
|
84 |
+
for spk_id, embeddings in speaker_embeddings.items():
|
85 |
+
speaker_embeddings[spk_id] = [np.array(embedding) for embedding in embeddings]
|
86 |
+
|
87 |
+
# --- Speaker ID to Name Mapping ---
|
88 |
+
speaker_id_to_name = dict(zip(df["VoxCeleb1 ID"], df["VGGFace1 ID"]))
|
89 |
+
|
90 |
+
# --- Load SpeechBrain Classifier ---
|
91 |
+
classifier = EncoderClassifier.from_hparams(
|
92 |
+
source="speechbrain/spkrec-xvect-voxceleb",
|
93 |
+
savedir="pretrained_models/spkrec-xvect-voxceleb",
|
94 |
+
)
|
95 |
+
|
96 |
+
# --- Function to Calculate Average Embedding (Centroid) ---
|
97 |
+
def calculate_average_embedding(embeddings):
|
98 |
+
avg_embedding = np.mean(embeddings, axis=0)
|
99 |
+
return normalize(avg_embedding.reshape(1, -1)).flatten()
|
100 |
+
|
101 |
+
# --- Precompute Speaker Centroids ---
|
102 |
+
speaker_centroids = {
|
103 |
+
spk_id: calculate_average_embedding(embeddings)
|
104 |
+
for spk_id, embeddings in speaker_embeddings.items()
|
105 |
+
}
|
106 |
+
|
107 |
+
# --- Function to Prepare Data for Visualization ---
|
108 |
+
def prepare_data_for_visualization(speaker_centroids, closest_speaker_ids):
|
109 |
+
all_embeddings = [
|
110 |
+
centroid
|
111 |
+
for speaker_id, centroid in speaker_centroids.items()
|
112 |
+
if speaker_id in closest_speaker_ids
|
113 |
+
]
|
114 |
+
all_speaker_ids = [
|
115 |
+
speaker_id
|
116 |
+
for speaker_id in speaker_centroids
|
117 |
+
if speaker_id in closest_speaker_ids
|
118 |
+
]
|
119 |
+
return np.array(all_embeddings), np.array(all_speaker_ids)
|
120 |
+
|
121 |
+
# --- Function to Reduce Dimensionality ---
|
122 |
+
def reduce_dimensionality(all_embeddings, method="tsne", perplexity=5, pca_dim=50):
|
123 |
+
if method == "pca":
|
124 |
+
reducer = PCA(n_components=2)
|
125 |
+
elif method == "tsne":
|
126 |
+
pca_reducer = PCA(n_components=pca_dim)
|
127 |
+
all_embeddings = pca_reducer.fit_transform(all_embeddings)
|
128 |
+
reducer = TSNE(n_components=2, random_state=42, perplexity=perplexity)
|
129 |
+
else:
|
130 |
+
raise ValueError("Invalid method. Choose 'pca' or 'tsne'.")
|
131 |
+
reduced_embeddings = reducer.fit_transform(all_embeddings)
|
132 |
+
return reducer, reduced_embeddings
|
133 |
+
|
134 |
+
# --- Function to Get Speaker Name from ID ---
|
135 |
+
def get_speaker_name(speaker_id):
|
136 |
+
return speaker_id_to_name.get(speaker_id, f"Unknown ({speaker_id})")
|
137 |
+
|
138 |
+
# --- Function to Generate Visualization ---
|
139 |
+
def generate_visualization(
|
140 |
+
pca_reducer,
|
141 |
+
reduced_embeddings,
|
142 |
+
all_speaker_ids,
|
143 |
+
new_embedding,
|
144 |
+
predicted_speaker_id,
|
145 |
+
visualization_method,
|
146 |
+
perplexity,
|
147 |
+
pca_dim,
|
148 |
+
):
|
149 |
+
if visualization_method == "pca":
|
150 |
+
new_embedding_reduced = pca_reducer.transform(new_embedding.reshape(1, -1))
|
151 |
+
elif visualization_method == "tsne":
|
152 |
+
combined_embeddings = np.vstack(
|
153 |
+
[reduced_embeddings, new_embedding.reshape(1, -1)]
|
154 |
+
)
|
155 |
+
reducer = TSNE(n_components=2, random_state=42, perplexity=perplexity)
|
156 |
+
combined_reduced = reducer.fit_transform(combined_embeddings)
|
157 |
+
reduced_embeddings = combined_reduced[:-1]
|
158 |
+
new_embedding_reduced = combined_reduced[-1].reshape(1, -1)
|
159 |
+
else:
|
160 |
+
raise ValueError("Invalid visualization method.")
|
161 |
+
|
162 |
+
fig = go.Figure()
|
163 |
+
fig.add_trace(
|
164 |
+
go.Scatter(
|
165 |
+
x=reduced_embeddings[:, 0],
|
166 |
+
y=reduced_embeddings[:, 1],
|
167 |
+
mode="markers",
|
168 |
+
marker=dict(color="blue", size=8, opacity=0.5),
|
169 |
+
text=[get_speaker_name(speaker_id) for speaker_id in all_speaker_ids],
|
170 |
+
name="Other Speakers",
|
171 |
+
)
|
172 |
+
)
|
173 |
+
|
174 |
+
if predicted_speaker_id in all_speaker_ids:
|
175 |
+
predicted_speaker_index = list(all_speaker_ids).index(predicted_speaker_id)
|
176 |
+
fig.add_trace(
|
177 |
+
go.Scatter(
|
178 |
+
x=[reduced_embeddings[predicted_speaker_index, 0]],
|
179 |
+
y=[reduced_embeddings[predicted_speaker_index, 1]],
|
180 |
+
mode="markers",
|
181 |
+
marker=dict(
|
182 |
+
color="green",
|
183 |
+
size=10,
|
184 |
+
symbol="circle",
|
185 |
+
line=dict(color="black", width=2),
|
186 |
+
),
|
187 |
+
name=get_speaker_name(predicted_speaker_id),
|
188 |
+
text=[get_speaker_name(predicted_speaker_id)],
|
189 |
+
)
|
190 |
+
)
|
191 |
+
|
192 |
+
fig.add_trace(
|
193 |
+
go.Scatter(
|
194 |
+
x=new_embedding_reduced[:, 0],
|
195 |
+
y=new_embedding_reduced[:, 1],
|
196 |
+
mode="markers",
|
197 |
+
marker=dict(color="red", size=12, symbol="star"),
|
198 |
+
name="New Voice",
|
199 |
+
text=["New Voice"],
|
200 |
+
)
|
201 |
+
)
|
202 |
+
|
203 |
+
fig.update_layout(
|
204 |
+
title=f"Dimensionality Reduction of Speaker Embeddings using {visualization_method.upper()}",
|
205 |
+
xaxis_title="Component 1",
|
206 |
+
yaxis_title="Component 2",
|
207 |
+
legend=dict(x=0, y=1, traceorder="normal", orientation="h"),
|
208 |
+
hovermode="closest",
|
209 |
+
)
|
210 |
+
return fig
|
211 |
+
|
212 |
+
# --- Main Function ---
|
213 |
+
def identify_voice_and_visualize_with_averaging(audio_file, perplexity=5):
|
214 |
+
try:
|
215 |
+
if isinstance(audio_file, str):
|
216 |
+
signal, fs = librosa.load(audio_file, sr=16000)
|
217 |
+
elif isinstance(audio_file, np.ndarray):
|
218 |
+
signal = audio_file
|
219 |
+
fs = 16000
|
220 |
+
else:
|
221 |
+
raise ValueError(
|
222 |
+
"Invalid audio input. Must be a file path or a NumPy array."
|
223 |
+
)
|
224 |
+
|
225 |
+
signal_tensor = torch.tensor(signal, dtype=torch.float32).unsqueeze(0)
|
226 |
+
signal_tensor = torch.nn.functional.pad(
|
227 |
+
signal_tensor, (0, max_length - signal_tensor.shape[1])
|
228 |
+
)
|
229 |
+
|
230 |
+
user_embedding = classifier.encode_batch(signal_tensor).cpu().detach().numpy()
|
231 |
+
user_embedding = normalize(
|
232 |
+
user_embedding.squeeze(axis=(0, 1)).reshape(1, -1)
|
233 |
+
).flatten()
|
234 |
+
|
235 |
+
similarity_scores = {
|
236 |
+
spk_id: cosine_similarity(
|
237 |
+
user_embedding.reshape(1, -1), centroid.reshape(1, -1)
|
238 |
+
)[0][0]
|
239 |
+
for spk_id, centroid in speaker_centroids.items()
|
240 |
+
}
|
241 |
+
|
242 |
+
closest_speaker_ids = sorted(
|
243 |
+
similarity_scores, key=similarity_scores.get, reverse=True
|
244 |
+
)[:num_closest_speakers]
|
245 |
+
predicted_speaker_id = closest_speaker_ids[0]
|
246 |
+
highest_similarity = similarity_scores[predicted_speaker_id]
|
247 |
+
|
248 |
+
all_embeddings, all_speaker_ids = prepare_data_for_visualization(
|
249 |
+
speaker_centroids, closest_speaker_ids
|
250 |
+
)
|
251 |
+
reducer, reduced_embeddings = reduce_dimensionality(
|
252 |
+
all_embeddings,
|
253 |
+
method=visualization_method,
|
254 |
+
perplexity=perplexity,
|
255 |
+
pca_dim=pca_dim,
|
256 |
+
)
|
257 |
+
|
258 |
+
predicted_speaker_name = get_speaker_name(predicted_speaker_id)
|
259 |
+
similarity_percentage = round(highest_similarity * 100, 2) # Rounded here
|
260 |
+
|
261 |
+
visualization = generate_visualization(
|
262 |
+
reducer,
|
263 |
+
reduced_embeddings,
|
264 |
+
all_speaker_ids,
|
265 |
+
user_embedding,
|
266 |
+
predicted_speaker_id,
|
267 |
+
visualization_method,
|
268 |
+
perplexity,
|
269 |
+
pca_dim,
|
270 |
+
)
|
271 |
+
|
272 |
+
result_text = (
|
273 |
+
f"The voice resembles speaker: {predicted_speaker_name} "
|
274 |
+
f"with a similarity of {similarity_percentage:.2f}%" # Display rounded value
|
275 |
+
)
|
276 |
+
return result_text, visualization
|
277 |
+
|
278 |
+
except Exception as e:
|
279 |
+
return f"Error during processing: {e}", None
|
280 |
+
|
281 |
+
# --- Gradio Interface ---
|
282 |
+
# Create a directory for caching examples if it doesn't exist
|
283 |
+
cache_dir = "examples_cache"
|
284 |
+
if not os.path.exists(cache_dir):
|
285 |
+
os.makedirs(cache_dir)
|
286 |
+
|
287 |
+
# Define the Gradio interface
|
288 |
+
iface = gr.Interface(
|
289 |
+
fn=identify_voice_and_visualize_with_averaging,
|
290 |
+
inputs=gr.Audio(type="filepath", label="Input Audio"),
|
291 |
+
outputs=["text", gr.Plot()],
|
292 |
+
title="Discover Your Celebrity Voice Twin!",
|
293 |
+
description="Record your voice or upload an audio file, and see your celebrity match! Not ready to record? Try our sample voices to see how it works!",
|
294 |
+
cache_examples=False,
|
295 |
+
examples_per_page=3,
|
296 |
+
examples=[
|
297 |
+
[os.path.join(sample_audio_dir, sample_audio_files[0])],
|
298 |
+
[os.path.join(sample_audio_dir, sample_audio_files[1])],
|
299 |
+
[os.path.join(sample_audio_dir, sample_audio_files[2])],
|
300 |
+
],
|
301 |
+
)
|
302 |
+
|
303 |
+
# Launch the interface
|
304 |
+
iface.launch(debug=True, share=True)
|