Spaces:
Runtime error
Runtime error
import argparse | |
# from dataclasses import dataclass | |
from langchain.prompts import ChatPromptTemplate | |
try: | |
from langchain_community.vectorstores import Chroma | |
except: | |
from langchain_community.vectorstores import Chroma | |
# from langchain.document_loaders import DirectoryLoader | |
from langchain_community.document_loaders import DirectoryLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.schema import Document | |
# from langchain.embeddings import OpenAIEmbeddings | |
#from langchain_openai import OpenAIEmbeddings | |
from langchain_community.vectorstores import Chroma | |
import openai | |
from dotenv import load_dotenv | |
import os | |
import shutil | |
import torch | |
from transformers import AutoModel,AutoTokenizer | |
model2 = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2") | |
tokenizer2 = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2") | |
# this shoub be used when we can not use sentence_transformers (which reqiures transformers==4.39. we cannot use | |
# this version since causes using large amount of RAm when loading falcon model) | |
# a custom embedding | |
#from sentence_transformers import SentenceTransformer | |
from langchain_experimental.text_splitter import SemanticChunker | |
from typing import List | |
import re | |
import warnings | |
from typing import List | |
import torch | |
from langchain import PromptTemplate | |
from langchain.chains import ConversationChain | |
from langchain.chains.conversation.memory import ConversationBufferWindowMemory | |
from langchain.llms import HuggingFacePipeline | |
from langchain.schema import BaseOutputParser | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
StoppingCriteria, | |
StoppingCriteriaList, | |
pipeline, | |
) | |
warnings.filterwarnings("ignore", category=UserWarning) | |
class MyEmbeddings: | |
def __init__(self): | |
#self.model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |
self.model=model2 | |
def embed_documents(self, texts: List[str]) -> List[List[float]]: | |
inputs = tokenizer2(texts, padding=True, truncation=True, return_tensors="pt") | |
# Get the model outputs | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
# Mean pooling to get sentence embeddings | |
embeddings = outputs.last_hidden_state.mean(dim=1) | |
return [embeddings[i].tolist() for i, sentence in enumerate(texts)] | |
def embed_query(self, query: str) -> List[float]: | |
inputs = tokenizer2(query, padding=True, truncation=True, return_tensors="pt") | |
# Get the model outputs | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
# Mean pooling to get sentence embeddings | |
embeddings = outputs.last_hidden_state.mean(dim=1) | |
return embeddings[0].tolist() | |
embeddings = MyEmbeddings() | |
splitter = SemanticChunker(embeddings) | |
CHROMA_PATH = "chroma8" | |
# call the chroma generated in a directory | |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings) | |
MODEL_NAME = "tiiuae/falcon-7b-instruct" | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, trust_remote_code=True, load_in_8bit=True, device_map="auto" | |
) | |
model = model.eval() | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
print(f"Model device: {model.device}") | |
generation_config = model.generation_config | |
generation_config.temperature = 0 | |
generation_config.num_return_sequences = 1 | |
generation_config.max_new_tokens = 256 | |
generation_config.use_cache = False | |
generation_config.repetition_penalty = 1.7 | |
generation_config.pad_token_id = tokenizer.eos_token_id | |
generation_config.eos_token_id = tokenizer.eos_token_id | |
generation_config | |
prompt = """ | |
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. | |
Current conversation: | |
Human: Who is Dwight K Schrute? | |
AI: | |
""".strip() | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
input_ids = input_ids.to(model.device) | |
class StopGenerationCriteria(StoppingCriteria): | |
def __init__( | |
self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device | |
): | |
stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens] | |
self.stop_token_ids = [ | |
torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids | |
] | |
def __call__( | |
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs | |
) -> bool: | |
for stop_ids in self.stop_token_ids: | |
if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all(): | |
return True | |
return False | |
stop_tokens = [["Human", ":"], ["AI", ":"]] | |
stopping_criteria = StoppingCriteriaList( | |
[StopGenerationCriteria(stop_tokens, tokenizer, model.device)] | |
) | |
generation_pipeline = pipeline( | |
model=model, | |
tokenizer=tokenizer, | |
return_full_text=True, | |
task="text-generation", | |
stopping_criteria=stopping_criteria, | |
generation_config=generation_config, | |
) | |
llm = HuggingFacePipeline(pipeline=generation_pipeline) | |
class CleanupOutputParser(BaseOutputParser): | |
def parse(self, text: str) -> str: | |
user_pattern = r"\nUser" | |
text = re.sub(user_pattern, "", text) | |
human_pattern = r"\nHuman:" | |
text = re.sub(human_pattern, "", text) | |
ai_pattern = r"\nAI:" | |
return re.sub(ai_pattern, "", text).strip() | |
def _type(self) -> str: | |
return "output_parser" | |
template = """ | |
The following | |
Current conversation: | |
{history} | |
Human: {input} | |
AI:""".strip() | |
prompt = PromptTemplate(input_variables=["history", "input"], template=template) | |
memory = ConversationBufferWindowMemory( | |
memory_key="history", k=6, return_only_outputs=True | |
) | |
chain = ConversationChain( | |
llm=llm, | |
memory=memory, | |
prompt=prompt, | |
output_parser=CleanupOutputParser(), | |
verbose=True, | |
) | |
def get_llama_response(message: str, history: list) -> str: | |
query_text = message | |
results = db.similarity_search_with_relevance_scores(query_text, k=3) | |
if len(results) == 0 or results[0][1] < 0.5: | |
print(f"Unable to find matching results.") | |
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results]) | |
template = """ | |
The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office. | |
Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical. | |
Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know. | |
Current conversation: | |
""" | |
s=""" | |
{history} | |
Human: {input} | |
AI:""".strip() | |
prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+ s) | |
#print(template) | |
chain.prompt=prompt | |
res = chain(query_text) | |
return(res["response"]) | |
import gradio as gr | |
gr.ChatInterface(get_llama_response).launch() |