Spaces:
Runtime error
Runtime error
File size: 6,980 Bytes
f97c148 3d4bfae f97c148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import argparse
# from dataclasses import dataclass
from langchain.prompts import ChatPromptTemplate
try:
from langchain_community.vectorstores import Chroma
except:
from langchain_community.vectorstores import Chroma
# from langchain.document_loaders import DirectoryLoader
from langchain_community.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
# from langchain.embeddings import OpenAIEmbeddings
#from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
import openai
from dotenv import load_dotenv
import os
import shutil
import torch
from transformers import AutoModel,AutoTokenizer
model2 = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
tokenizer2 = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
# this shoub be used when we can not use sentence_transformers (which reqiures transformers==4.39. we cannot use
# this version since causes using large amount of RAm when loading falcon model)
# a custom embedding
#from sentence_transformers import SentenceTransformer
from langchain_experimental.text_splitter import SemanticChunker
from typing import List
import re
import warnings
from typing import List
import torch
from langchain import PromptTemplate
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.llms import HuggingFacePipeline
from langchain.schema import BaseOutputParser
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
StoppingCriteria,
StoppingCriteriaList,
pipeline,
)
warnings.filterwarnings("ignore", category=UserWarning)
class MyEmbeddings:
def __init__(self):
#self.model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
self.model=model2
def embed_documents(self, texts: List[str]) -> List[List[float]]:
inputs = tokenizer2(texts, padding=True, truncation=True, return_tensors="pt")
# Get the model outputs
with torch.no_grad():
outputs = self.model(**inputs)
# Mean pooling to get sentence embeddings
embeddings = outputs.last_hidden_state.mean(dim=1)
return [embeddings[i].tolist() for i, sentence in enumerate(texts)]
def embed_query(self, query: str) -> List[float]:
inputs = tokenizer2(query, padding=True, truncation=True, return_tensors="pt")
# Get the model outputs
with torch.no_grad():
outputs = self.model(**inputs)
# Mean pooling to get sentence embeddings
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings[0].tolist()
embeddings = MyEmbeddings()
splitter = SemanticChunker(embeddings)
CHROMA_PATH = "chroma8"
# call the chroma generated in a directory
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
MODEL_NAME = "tiiuae/falcon-7b-instruct"
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME, trust_remote_code=True, load_in_8bit=True, device_map="auto"
)
model = model.eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
print(f"Model device: {model.device}")
generation_config = model.generation_config
generation_config.temperature = 0
generation_config.num_return_sequences = 1
generation_config.max_new_tokens = 256
generation_config.use_cache = False
generation_config.repetition_penalty = 1.7
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id
generation_config
prompt = """
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context.
Current conversation:
Human: Who is Dwight K Schrute?
AI:
""".strip()
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)
class StopGenerationCriteria(StoppingCriteria):
def __init__(
self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
):
stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
self.stop_token_ids = [
torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids
]
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
for stop_ids in self.stop_token_ids:
if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
return True
return False
stop_tokens = [["Human", ":"], ["AI", ":"]]
stopping_criteria = StoppingCriteriaList(
[StopGenerationCriteria(stop_tokens, tokenizer, model.device)]
)
generation_pipeline = pipeline(
model=model,
tokenizer=tokenizer,
return_full_text=True,
task="text-generation",
stopping_criteria=stopping_criteria,
generation_config=generation_config,
)
llm = HuggingFacePipeline(pipeline=generation_pipeline)
class CleanupOutputParser(BaseOutputParser):
def parse(self, text: str) -> str:
user_pattern = r"\nUser"
text = re.sub(user_pattern, "", text)
human_pattern = r"\nHuman:"
text = re.sub(human_pattern, "", text)
ai_pattern = r"\nAI:"
return re.sub(ai_pattern, "", text).strip()
@property
def _type(self) -> str:
return "output_parser"
template = """
The following
Current conversation:
{history}
Human: {input}
AI:""".strip()
prompt = PromptTemplate(input_variables=["history", "input"], template=template)
memory = ConversationBufferWindowMemory(
memory_key="history", k=6, return_only_outputs=True
)
chain = ConversationChain(
llm=llm,
memory=memory,
prompt=prompt,
output_parser=CleanupOutputParser(),
verbose=True,
)
def get_llama_response(message: str, history: list) -> str:
query_text = message
results = db.similarity_search_with_relevance_scores(query_text, k=3)
if len(results) == 0 or results[0][1] < 0.5:
print(f"Unable to find matching results.")
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
template = """
The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
Current conversation:
"""
s="""
{history}
Human: {input}
AI:""".strip()
prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+ s)
#print(template)
chain.prompt=prompt
res = chain(query_text)
return(res["response"])
import gradio as gr
gr.ChatInterface(get_llama_response).launch() |