AminFaraji commited on
Commit
f97c148
·
verified ·
1 Parent(s): 89ac6d5

Create falcon_chatbot

Browse files
Files changed (1) hide show
  1. falcon_chatbot +231 -0
falcon_chatbot ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ # from dataclasses import dataclass
3
+ from langchain.prompts import ChatPromptTemplate
4
+
5
+ try:
6
+ from langchain_community.vectorstores import Chroma
7
+ except:
8
+ from langchain_community.vectorstores import Chroma
9
+
10
+ # from langchain.document_loaders import DirectoryLoader
11
+ from langchain_community.document_loaders import DirectoryLoader
12
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
13
+ from langchain.schema import Document
14
+ # from langchain.embeddings import OpenAIEmbeddings
15
+ #from langchain_openai import OpenAIEmbeddings
16
+ from langchain_community.vectorstores import Chroma
17
+ import openai
18
+ from dotenv import load_dotenv
19
+ import os
20
+ import shutil
21
+ import torch
22
+
23
+ from transformers import AutoModel,AutoTokenizer
24
+ model2 = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
25
+ tokenizer2 = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
26
+
27
+
28
+ # this shoub be used when we can not use sentence_transformers (which reqiures transformers==4.39. we cannot use
29
+ # this version since causes using large amount of RAm when loading falcon model)
30
+ # a custom embedding
31
+ #from sentence_transformers import SentenceTransformer
32
+ from langchain_experimental.text_splitter import SemanticChunker
33
+ from typing import List
34
+ import re
35
+ import warnings
36
+ from typing import List
37
+
38
+ import torch
39
+ from langchain import PromptTemplate
40
+ from langchain.chains import ConversationChain
41
+ from langchain.chains.conversation.memory import ConversationBufferWindowMemory
42
+ from langchain.llms import HuggingFacePipeline
43
+ from langchain.schema import BaseOutputParser
44
+ from transformers import (
45
+ AutoModelForCausalLM,
46
+ AutoTokenizer,
47
+ StoppingCriteria,
48
+ StoppingCriteriaList,
49
+ pipeline,
50
+ )
51
+
52
+ warnings.filterwarnings("ignore", category=UserWarning)
53
+
54
+
55
+ class MyEmbeddings:
56
+ def __init__(self):
57
+ #self.model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
58
+ self.model=model2
59
+
60
+ def embed_documents(self, texts: List[str]) -> List[List[float]]:
61
+ inputs = tokenizer2(texts, padding=True, truncation=True, return_tensors="pt")
62
+
63
+ # Get the model outputs
64
+ with torch.no_grad():
65
+ outputs = self.model(**inputs)
66
+
67
+ # Mean pooling to get sentence embeddings
68
+ embeddings = outputs.last_hidden_state.mean(dim=1)
69
+ return [embeddings[i].tolist() for i, sentence in enumerate(texts)]
70
+ def embed_query(self, query: str) -> List[float]:
71
+ inputs = tokenizer2(query, padding=True, truncation=True, return_tensors="pt")
72
+
73
+ # Get the model outputs
74
+ with torch.no_grad():
75
+ outputs = self.model(**inputs)
76
+
77
+ # Mean pooling to get sentence embeddings
78
+ embeddings = outputs.last_hidden_state.mean(dim=1)
79
+ return embeddings[0].tolist()
80
+
81
+
82
+ embeddings = MyEmbeddings()
83
+
84
+ splitter = SemanticChunker(embeddings)
85
+
86
+
87
+ CHROMA_PATH = "/content/drive/My Drive/chroma8"
88
+ # call the chroma generated in a directory
89
+ db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
90
+
91
+
92
+
93
+ MODEL_NAME = "tiiuae/falcon-7b-instruct"
94
+
95
+ model = AutoModelForCausalLM.from_pretrained(
96
+ MODEL_NAME, trust_remote_code=True, load_in_8bit=True, device_map="auto"
97
+ )
98
+ model = model.eval()
99
+
100
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
101
+ print(f"Model device: {model.device}")
102
+
103
+
104
+ generation_config = model.generation_config
105
+ generation_config.temperature = 0
106
+ generation_config.num_return_sequences = 1
107
+ generation_config.max_new_tokens = 256
108
+ generation_config.use_cache = False
109
+ generation_config.repetition_penalty = 1.7
110
+ generation_config.pad_token_id = tokenizer.eos_token_id
111
+ generation_config.eos_token_id = tokenizer.eos_token_id
112
+ generation_config
113
+
114
+
115
+ prompt = """
116
+ The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context.
117
+
118
+ Current conversation:
119
+
120
+ Human: Who is Dwight K Schrute?
121
+ AI:
122
+ """.strip()
123
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
124
+ input_ids = input_ids.to(model.device)
125
+
126
+
127
+
128
+ class StopGenerationCriteria(StoppingCriteria):
129
+ def __init__(
130
+ self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
131
+ ):
132
+ stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
133
+ self.stop_token_ids = [
134
+ torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids
135
+ ]
136
+
137
+ def __call__(
138
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
139
+ ) -> bool:
140
+ for stop_ids in self.stop_token_ids:
141
+ if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
142
+ return True
143
+ return False
144
+
145
+
146
+ stop_tokens = [["Human", ":"], ["AI", ":"]]
147
+ stopping_criteria = StoppingCriteriaList(
148
+ [StopGenerationCriteria(stop_tokens, tokenizer, model.device)]
149
+ )
150
+
151
+ generation_pipeline = pipeline(
152
+ model=model,
153
+ tokenizer=tokenizer,
154
+ return_full_text=True,
155
+ task="text-generation",
156
+ stopping_criteria=stopping_criteria,
157
+ generation_config=generation_config,
158
+ )
159
+
160
+ llm = HuggingFacePipeline(pipeline=generation_pipeline)
161
+
162
+
163
+ class CleanupOutputParser(BaseOutputParser):
164
+ def parse(self, text: str) -> str:
165
+ user_pattern = r"\nUser"
166
+ text = re.sub(user_pattern, "", text)
167
+ human_pattern = r"\nHuman:"
168
+ text = re.sub(human_pattern, "", text)
169
+ ai_pattern = r"\nAI:"
170
+ return re.sub(ai_pattern, "", text).strip()
171
+
172
+ @property
173
+ def _type(self) -> str:
174
+ return "output_parser"
175
+
176
+
177
+ template = """
178
+ The following
179
+ Current conversation:
180
+
181
+ {history}
182
+
183
+ Human: {input}
184
+ AI:""".strip()
185
+ prompt = PromptTemplate(input_variables=["history", "input"], template=template)
186
+
187
+ memory = ConversationBufferWindowMemory(
188
+ memory_key="history", k=6, return_only_outputs=True
189
+ )
190
+
191
+ chain = ConversationChain(
192
+ llm=llm,
193
+ memory=memory,
194
+ prompt=prompt,
195
+ output_parser=CleanupOutputParser(),
196
+ verbose=True,
197
+ )
198
+
199
+
200
+ def get_llama_response(message: str, history: list) -> str:
201
+ query_text = message
202
+
203
+ results = db.similarity_search_with_relevance_scores(query_text, k=3)
204
+ if len(results) == 0 or results[0][1] < 0.5:
205
+ print(f"Unable to find matching results.")
206
+
207
+
208
+ context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
209
+ template = """
210
+ The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
211
+ Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
212
+ Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
213
+
214
+ Current conversation:
215
+ """
216
+ s="""
217
+ {history}
218
+ Human: {input}
219
+ AI:""".strip()
220
+
221
+
222
+ prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+ s)
223
+
224
+ #print(template)
225
+ chain.prompt=prompt
226
+ res = chain(query_text)
227
+ return(res["response"])
228
+
229
+ import gradio as gr
230
+
231
+ gr.ChatInterface(get_llama_response).launch()