See axolotl config
axolotl version: 0.4.0
base_model: microsoft/Phi-3-mini-128k-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: sosoai/mixed_dataset
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./phi3-sft-out
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 5
optimizer: adamw_torch
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.000003
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: True
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
eval_sample_packing: False
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
pad_token: "<|endoftext|>"
phi3-sft-out
This model is a fine-tuned version of microsoft/Phi-3-mini-128k-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2406
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.6772 | 0.0 | 1 | 1.3794 |
3.1471 | 0.25 | 175 | 1.2942 |
3.0306 | 0.5 | 350 | 1.2572 |
2.7486 | 0.75 | 525 | 1.2491 |
2.7702 | 1.0 | 700 | 1.2467 |
2.6302 | 1.24 | 875 | 1.2458 |
2.8356 | 1.49 | 1050 | 1.2436 |
2.7697 | 1.74 | 1225 | 1.2418 |
2.7226 | 2.0 | 1400 | 1.2415 |
2.7363 | 2.23 | 1575 | 1.2411 |
2.6754 | 2.48 | 1750 | 1.2407 |
2.9697 | 2.73 | 1925 | 1.2407 |
2.6213 | 2.99 | 2100 | 1.2406 |
2.6752 | 3.23 | 2275 | 1.2407 |
2.7226 | 3.48 | 2450 | 1.2404 |
2.6131 | 3.73 | 2625 | 1.2405 |
2.7255 | 3.98 | 2800 | 1.2404 |
2.7335 | 4.21 | 2975 | 1.2404 |
2.7924 | 4.46 | 3150 | 1.2406 |
2.6851 | 4.71 | 3325 | 1.2406 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.1
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for sosoai/hansoldeco-phi3-128k-v0.1
Base model
microsoft/Phi-3-mini-128k-instruct