soltaniali's picture
End of training
46cff0b verified
metadata
license: apache-2.0
base_model: HooshvareLab/roberta-fa-zwnj-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
model-index:
  - name: roberta-fa-zwnj-base_v2
    results: []

roberta-fa-zwnj-base_v2

This model is a fine-tuned version of HooshvareLab/roberta-fa-zwnj-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3459
  • Accuracy: 0.6322
  • F1: 0.6314
  • Precision: 0.6344

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision
No log 1.0 221 1.1727 0.5051 0.4774 0.5339
No log 2.0 442 0.9745 0.5993 0.5974 0.6020
1.0847 3.0 663 0.9534 0.6390 0.6364 0.6376
1.0847 4.0 884 0.9851 0.6504 0.6494 0.6559
0.6653 5.0 1105 1.0650 0.6300 0.6302 0.6337
0.6653 6.0 1326 1.1519 0.6413 0.6401 0.6450
0.4049 7.0 1547 1.2131 0.6356 0.6358 0.6362
0.4049 8.0 1768 1.2801 0.6356 0.6355 0.6360
0.4049 9.0 1989 1.3335 0.6322 0.6306 0.6320
0.2507 10.0 2210 1.3459 0.6322 0.6314 0.6344

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2