See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/llama-3-8b
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3387218bff6889ea_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3387218bff6889ea_train_data.json
type:
field_instruction: context
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 5
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56t0/54f6f9b4-7250-4b95-9e46-8a4d9a26f5e9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_steps: 2384
micro_batch_size: 4
mlflow_experiment_name: /tmp/3387218bff6889ea_train_data.json
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
seed: 3152046077
sequence_len: 2048
shuffle: true
strict: false
tf32: true
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: null
wandb_project: god
wandb_run: 2kcs
wandb_runid: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
54f6f9b4-7250-4b95-9e46-8a4d9a26f5e9
This model is a fine-tuned version of unsloth/llama-3-8b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9744
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 3152046077
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 615
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.0246 | 0.0016 | 1 | 3.0606 |
2.0825 | 0.0814 | 50 | 2.0478 |
2.0536 | 0.1628 | 100 | 2.0270 |
2.0386 | 0.2442 | 150 | 2.0189 |
2.0418 | 0.3257 | 200 | 2.0076 |
2.0195 | 0.4071 | 250 | 2.0002 |
2.0159 | 0.4885 | 300 | 1.9939 |
2.0077 | 0.5699 | 350 | 1.9878 |
1.9377 | 0.6513 | 400 | 1.9830 |
1.9941 | 0.7327 | 450 | 1.9789 |
2.0044 | 0.8142 | 500 | 1.9761 |
1.936 | 0.8956 | 550 | 1.9747 |
1.9673 | 0.9770 | 600 | 1.9744 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for sn56t0/54f6f9b4-7250-4b95-9e46-8a4d9a26f5e9
Base model
unsloth/llama-3-8b