See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: peft-internal-testing/tiny-dummy-qwen2
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- cb723d44360708a8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cb723d44360708a8_train_data.json
type:
field_instruction: title
field_output: content
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56m4/63c40367-215a-402c-9649-e2fb38c568af
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 8
mlflow_experiment_name: /tmp/cb723d44360708a8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: null
wandb_project: god
wandb_run: nqut
wandb_runid: null
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
63c40367-215a-402c-9649-e2fb38c568af
This model is a fine-tuned version of peft-internal-testing/tiny-dummy-qwen2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.9205
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 441
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0068 | 1 | 11.9315 |
11.9267 | 0.2517 | 37 | 11.9255 |
11.9228 | 0.5034 | 74 | 11.9225 |
11.9226 | 0.7551 | 111 | 11.9222 |
11.9223 | 1.0068 | 148 | 11.9215 |
11.9222 | 1.2585 | 185 | 11.9210 |
11.9214 | 1.5102 | 222 | 11.9208 |
11.9215 | 1.7619 | 259 | 11.9207 |
11.9213 | 2.0136 | 296 | 11.9206 |
11.9212 | 2.2653 | 333 | 11.9205 |
11.9209 | 2.5170 | 370 | 11.9205 |
11.921 | 2.7687 | 407 | 11.9205 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for sn56m4/63c40367-215a-402c-9649-e2fb38c568af
Base model
peft-internal-testing/tiny-dummy-qwen2