Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: peft-internal-testing/tiny-dummy-qwen2
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 9f8e2e25b9bebc75_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/9f8e2e25b9bebc75_train_data.json
  type:
    field_input: model_a
    field_instruction: prompt
    field_output: response_a
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56a6/edf1df8b-bf6c-4fc0-96e6-8e191e0da18f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 8
mlflow_experiment_name: /tmp/9f8e2e25b9bebc75_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: null
wandb_project: god
wandb_run: gs3b
wandb_runid: null
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

edf1df8b-bf6c-4fc0-96e6-8e191e0da18f

This model is a fine-tuned version of peft-internal-testing/tiny-dummy-qwen2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.9147

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0024 1 11.9313
11.9254 0.0988 42 11.9250
11.9196 0.1975 84 11.9193
11.9171 0.2963 126 11.9173
11.9173 0.3951 168 11.9163
11.9158 0.4938 210 11.9157
11.9147 0.5926 252 11.9153
11.9156 0.6914 294 11.9151
11.9156 0.7901 336 11.9149
11.9147 0.8889 378 11.9148
11.9142 0.9877 420 11.9147
11.7297 1.0864 462 11.9147

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for sn56a6/edf1df8b-bf6c-4fc0-96e6-8e191e0da18f

Adapter
(261)
this model