flan-t5-base for Extractive QA
This is the flan-t5-base model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
UPDATE: With transformers version 4.31.0 the use_remote_code=True
is no longer necessary.
NOTE: The <cls>
token must be manually added to the beginning of the question for this model to work properly.
It uses the <cls>
token to be able to make "no answer" predictions.
The t5 tokenizer does not automatically add this special token which is why it is added manually.
Overview
Language model: flan-t5-base
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Infrastructure: 1x NVIDIA 3070
Model Usage
import torch
from transformers import(
AutoModelForQuestionAnswering,
AutoTokenizer,
pipeline
)
model_name = "sjrhuschlee/flan-t5-base-squad2"
# a) Using pipelines
nlp = pipeline(
'question-answering',
model=model_name,
tokenizer=model_name,
# trust_remote_code=True, # Do not use if version transformers>=4.31.0
)
qa_input = {
'question': f'{nlp.tokenizer.cls_token}Where do I live?', # '<cls>Where do I live?'
'context': 'My name is Sarah and I live in London'
}
res = nlp(qa_input)
# {'score': 0.980, 'start': 30, 'end': 37, 'answer': ' London'}
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(
model_name,
# trust_remote_code=True # Do not use if version transformers>=4.31.0
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
question = f'{tokenizer.cls_token}Where do I live?' # '<cls>Where do I live?'
context = 'My name is Sarah and I live in London'
encoding = tokenizer(question, context, return_tensors="pt")
output = model(
encoding["input_ids"],
attention_mask=encoding["attention_mask"]
)
all_tokens = tokenizer.convert_ids_to_tokens(encoding["input_ids"][0].tolist())
answer_tokens = all_tokens[torch.argmax(output["start_logits"]):torch.argmax(output["end_logits"]) + 1]
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
# 'London'
Metrics
# Squad v2
{
"eval_HasAns_exact": 79.97638326585695,
"eval_HasAns_f1": 86.1444296592862,
"eval_HasAns_total": 5928,
"eval_NoAns_exact": 84.42388561816652,
"eval_NoAns_f1": 84.42388561816652,
"eval_NoAns_total": 5945,
"eval_best_exact": 82.2033184536343,
"eval_best_exact_thresh": 0.0,
"eval_best_f1": 85.28292588395921,
"eval_best_f1_thresh": 0.0,
"eval_exact": 82.2033184536343,
"eval_f1": 85.28292588395928,
"eval_runtime": 522.0299,
"eval_samples": 12001,
"eval_samples_per_second": 22.989,
"eval_steps_per_second": 0.96,
"eval_total": 11873
}
# Squad
{
"eval_exact_match": 86.3197729422895,
"eval_f1": 92.94686836210295,
"eval_runtime": 442.1088,
"eval_samples": 10657,
"eval_samples_per_second": 24.105,
"eval_steps_per_second": 1.007
}
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4.0
Training results
Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 1,397
Datasets used to train sjrhuschlee/flan-t5-base-squad2
Evaluation results
- Exact Match on squad_v2validation set self-reported82.203
- F1 on squad_v2validation set self-reported85.283
- Exact Match on squadvalidation set self-reported86.367
- F1 on squadvalidation set self-reported92.965
- Exact Match on adversarial_qavalidation set self-reported34.167
- F1 on adversarial_qavalidation set self-reported46.911
- Exact Match on squad_adversarialvalidation set self-reported80.862
- F1 on squad_adversarialvalidation set self-reported86.070
- Exact Match on squadshifts amazontest set self-reported71.624
- F1 on squadshifts amazontest set self-reported85.113