distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0332
  • Accuracy: {'accuracy': 0.89}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.4714 {'accuracy': 0.861}
0.4431 2.0 500 0.4376 {'accuracy': 0.879}
0.4431 3.0 750 0.6543 {'accuracy': 0.874}
0.2114 4.0 1000 0.6353 {'accuracy': 0.888}
0.2114 5.0 1250 0.8143 {'accuracy': 0.881}
0.0603 6.0 1500 0.8727 {'accuracy': 0.894}
0.0603 7.0 1750 0.9625 {'accuracy': 0.887}
0.0297 8.0 2000 0.9678 {'accuracy': 0.89}
0.0297 9.0 2250 1.0445 {'accuracy': 0.888}
0.0057 10.0 2500 1.0332 {'accuracy': 0.89}

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sinakhat/distilbert-base-uncased-lora-text-classification

Adapter
(221)
this model