best_model-yelp_polarity-64-13

This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9118
  • Accuracy: 0.9062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 4 0.9825 0.8828
No log 2.0 8 0.9391 0.8906
0.0791 3.0 12 0.8979 0.8984
0.0791 4.0 16 0.8416 0.875
0.0238 5.0 20 0.8260 0.8906
0.0238 6.0 24 0.8079 0.8984
0.0238 7.0 28 0.7782 0.8906
0.0015 8.0 32 0.7635 0.8984
0.0015 9.0 36 0.7694 0.9062
0.0001 10.0 40 0.7757 0.9062
0.0001 11.0 44 0.7786 0.9141
0.0001 12.0 48 0.7749 0.9141
0.0 13.0 52 0.7730 0.9141
0.0 14.0 56 0.7692 0.9141
0.0 15.0 60 0.7662 0.9141
0.0 16.0 64 0.7640 0.9141
0.0 17.0 68 0.7616 0.9141
0.0 18.0 72 0.7600 0.9141
0.0 19.0 76 0.7608 0.9141
0.0 20.0 80 0.7625 0.9141
0.0 21.0 84 0.7641 0.9141
0.0 22.0 88 0.7656 0.9141
0.0 23.0 92 0.7670 0.9141
0.0 24.0 96 0.7692 0.9141
0.0 25.0 100 0.7709 0.9141
0.0 26.0 104 0.7737 0.9141
0.0 27.0 108 0.7763 0.9141
0.0 28.0 112 0.7774 0.9141
0.0 29.0 116 0.7802 0.9141
0.0 30.0 120 0.7819 0.9141
0.0 31.0 124 0.7846 0.9141
0.0 32.0 128 0.7864 0.9141
0.0 33.0 132 0.7891 0.9141
0.0 34.0 136 0.7923 0.9141
0.0 35.0 140 0.7953 0.9141
0.0 36.0 144 0.7967 0.9141
0.0 37.0 148 0.7973 0.9141
0.0 38.0 152 0.7987 0.9141
0.0 39.0 156 0.8002 0.9141
0.0 40.0 160 0.8022 0.9141
0.0 41.0 164 0.8030 0.9141
0.0 42.0 168 0.8043 0.9141
0.0 43.0 172 0.8048 0.9141
0.0 44.0 176 0.8057 0.9141
0.0 45.0 180 0.8068 0.9141
0.0 46.0 184 0.8080 0.9141
0.0 47.0 188 0.8104 0.9141
0.0 48.0 192 0.8121 0.9141
0.0 49.0 196 0.8122 0.9141
0.0 50.0 200 0.8133 0.9141
0.0 51.0 204 0.8146 0.9141
0.0 52.0 208 0.8154 0.9141
0.0 53.0 212 0.8160 0.9141
0.0 54.0 216 0.8182 0.9141
0.0 55.0 220 0.8204 0.9141
0.0 56.0 224 0.8226 0.9141
0.0 57.0 228 0.8228 0.9141
0.0 58.0 232 0.8241 0.9141
0.0 59.0 236 0.8263 0.9141
0.0 60.0 240 0.8284 0.9062
0.0 61.0 244 0.8287 0.9062
0.0 62.0 248 0.8300 0.9062
0.0 63.0 252 0.8317 0.9062
0.0 64.0 256 0.8327 0.9062
0.0 65.0 260 0.8342 0.9062
0.0 66.0 264 0.8353 0.9062
0.0 67.0 268 0.8369 0.9062
0.0 68.0 272 0.8378 0.9062
0.0 69.0 276 0.8386 0.9062
0.0 70.0 280 0.8394 0.9062
0.0 71.0 284 0.8403 0.9062
0.0 72.0 288 0.8413 0.9062
0.0 73.0 292 0.8414 0.9062
0.0 74.0 296 0.8430 0.9062
0.0 75.0 300 0.8439 0.9062
0.0 76.0 304 0.8452 0.9062
0.0 77.0 308 0.8469 0.9062
0.0 78.0 312 0.8484 0.9062
0.0 79.0 316 0.8499 0.9062
0.0 80.0 320 0.8517 0.9062
0.0 81.0 324 0.8533 0.9062
0.0 82.0 328 0.8538 0.9062
0.0 83.0 332 0.8549 0.9062
0.0 84.0 336 0.8565 0.9062
0.0 85.0 340 0.8575 0.9062
0.0 86.0 344 0.8585 0.9062
0.0 87.0 348 0.8596 0.9062
0.0 88.0 352 0.8609 0.9062
0.0 89.0 356 0.8623 0.9062
0.0 90.0 360 0.8641 0.9062
0.0 91.0 364 0.8653 0.9062
0.0 92.0 368 0.8664 0.9062
0.0 93.0 372 0.8674 0.9062
0.0 94.0 376 0.8695 0.9062
0.0 95.0 380 0.8711 0.9062
0.0 96.0 384 0.8715 0.9062
0.0 97.0 388 0.8713 0.9062
0.0 98.0 392 0.8725 0.9062
0.0 99.0 396 0.8725 0.9062
0.0 100.0 400 0.8730 0.9062
0.0 101.0 404 0.8730 0.9062
0.0 102.0 408 0.8738 0.9062
0.0 103.0 412 0.8750 0.9062
0.0 104.0 416 0.8756 0.9062
0.0 105.0 420 0.8757 0.9062
0.0 106.0 424 0.8772 0.9062
0.0 107.0 428 0.8785 0.9062
0.0 108.0 432 0.8795 0.9062
0.0 109.0 436 0.8806 0.9062
0.0 110.0 440 0.8815 0.9062
0.0 111.0 444 0.8826 0.9062
0.0 112.0 448 0.8837 0.9062
0.0 113.0 452 0.8846 0.9062
0.0 114.0 456 0.8859 0.9062
0.0 115.0 460 0.8877 0.9062
0.0 116.0 464 0.8891 0.9062
0.0 117.0 468 0.8913 0.9062
0.0 118.0 472 0.8926 0.9062
0.0 119.0 476 0.8940 0.9062
0.0 120.0 480 0.8959 0.9062
0.0 121.0 484 0.8978 0.9062
0.0 122.0 488 0.8987 0.9062
0.0 123.0 492 0.8999 0.9062
0.0 124.0 496 0.8998 0.9062
0.0 125.0 500 0.9010 0.9062
0.0 126.0 504 0.9019 0.9062
0.0 127.0 508 0.9031 0.9062
0.0 128.0 512 0.9036 0.9062
0.0 129.0 516 0.9039 0.9062
0.0 130.0 520 0.9043 0.9062
0.0 131.0 524 0.9043 0.9062
0.0 132.0 528 0.9052 0.9062
0.0 133.0 532 0.9052 0.9062
0.0 134.0 536 0.9060 0.9062
0.0 135.0 540 0.9071 0.9062
0.0 136.0 544 0.9078 0.9062
0.0 137.0 548 0.9085 0.9062
0.0 138.0 552 0.9087 0.9062
0.0 139.0 556 0.9094 0.9062
0.0 140.0 560 0.9097 0.9062
0.0 141.0 564 0.9101 0.9062
0.0 142.0 568 0.9105 0.9062
0.0 143.0 572 0.9108 0.9062
0.0 144.0 576 0.9110 0.9062
0.0 145.0 580 0.9112 0.9062
0.0 146.0 584 0.9115 0.9062
0.0 147.0 588 0.9116 0.9062
0.0 148.0 592 0.9117 0.9062
0.0 149.0 596 0.9118 0.9062
0.0 150.0 600 0.9118 0.9062

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simonycl/best_model-yelp_polarity-64-13

Finetuned
(172)
this model