bert-medical-ner

This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1905
  • Precision: 0.6552
  • Recall: 0.6965
  • F1: 0.6752
  • Accuracy: 0.7449

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 71 1.8255 0.3427 0.4460 0.3876 0.5555
No log 2.0 142 1.3139 0.4722 0.5703 0.5166 0.6442
No log 3.0 213 1.1147 0.5258 0.6029 0.5617 0.6886
No log 4.0 284 0.9873 0.5785 0.6151 0.5962 0.7048
No log 5.0 355 0.9282 0.6314 0.6558 0.6434 0.7312
No log 6.0 426 0.8760 0.642 0.6538 0.6478 0.7329
No log 7.0 497 0.8501 0.6608 0.6904 0.6753 0.7466
1.1706 8.0 568 0.8313 0.6791 0.7067 0.6926 0.7483
1.1706 9.0 639 0.8002 0.6616 0.7047 0.6824 0.7449
1.1706 10.0 710 0.8280 0.6640 0.6721 0.6680 0.7363
1.1706 11.0 781 0.8248 0.6594 0.6823 0.6707 0.7457
1.1706 12.0 852 0.7988 0.6610 0.7189 0.6888 0.7654
1.1706 13.0 923 0.8593 0.6587 0.6762 0.6673 0.7423
1.1706 14.0 994 0.8204 0.6719 0.6965 0.6840 0.7534
0.4317 15.0 1065 0.8478 0.6770 0.7128 0.6944 0.7526
0.4317 16.0 1136 0.8855 0.6610 0.7149 0.6869 0.7730
0.4317 17.0 1207 0.9091 0.6751 0.7067 0.6905 0.7560
0.4317 18.0 1278 0.9201 0.6555 0.7169 0.6848 0.7568
0.4317 19.0 1349 0.9840 0.6623 0.7189 0.6895 0.7483
0.4317 20.0 1420 0.9817 0.6833 0.7251 0.7036 0.7543
0.4317 21.0 1491 0.9958 0.6583 0.6945 0.6759 0.7509
0.2121 22.0 1562 0.9340 0.6647 0.7026 0.6832 0.7722
0.2121 23.0 1633 0.9906 0.6622 0.7108 0.6857 0.7619
0.2121 24.0 1704 1.0099 0.6692 0.7088 0.6884 0.7526
0.2121 25.0 1775 1.0627 0.6673 0.7189 0.6922 0.7662
0.2121 26.0 1846 1.0744 0.6584 0.7067 0.6817 0.7637
0.2121 27.0 1917 1.1328 0.6569 0.6864 0.6713 0.7389
0.2121 28.0 1988 1.0799 0.6641 0.7128 0.6876 0.7577
0.1201 29.0 2059 1.1156 0.6628 0.7047 0.6831 0.7568
0.1201 30.0 2130 1.0839 0.6628 0.6965 0.6792 0.75
0.1201 31.0 2201 1.1511 0.6526 0.6925 0.6719 0.7389
0.1201 32.0 2272 1.1140 0.6737 0.7149 0.6937 0.7543
0.1201 33.0 2343 1.1094 0.6609 0.6986 0.6792 0.7466
0.1201 34.0 2414 1.1332 0.6755 0.7251 0.6994 0.7534
0.1201 35.0 2485 1.1322 0.6841 0.7189 0.7011 0.7551
0.0776 36.0 2556 1.1603 0.6711 0.7189 0.6942 0.7551
0.0776 37.0 2627 1.1460 0.6504 0.7047 0.6764 0.7543
0.0776 38.0 2698 1.1387 0.6584 0.7067 0.6817 0.7577
0.0776 39.0 2769 1.1438 0.6641 0.7088 0.6857 0.7534
0.0776 40.0 2840 1.1791 0.6660 0.7149 0.6896 0.7577
0.0776 41.0 2911 1.1701 0.6641 0.7088 0.6857 0.75
0.0776 42.0 2982 1.1889 0.6615 0.6965 0.6786 0.7457
0.0571 43.0 3053 1.1810 0.6533 0.6945 0.6732 0.7449
0.0571 44.0 3124 1.1944 0.6577 0.6965 0.6766 0.7440
0.0571 45.0 3195 1.2032 0.6564 0.6925 0.6739 0.7432
0.0571 46.0 3266 1.2092 0.6609 0.6945 0.6773 0.7449
0.0571 47.0 3337 1.1864 0.6622 0.6986 0.6799 0.7466
0.0571 48.0 3408 1.1972 0.6538 0.6925 0.6726 0.7449
0.0571 49.0 3479 1.1899 0.6545 0.6945 0.6739 0.7449
0.0467 50.0 3550 1.1905 0.6552 0.6965 0.6752 0.7449

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
35
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.