whisper-large-v2-mn-13
This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1689
- Wer: 20.0240
- Cer: 6.6010
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 25000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
---|---|---|---|---|---|
0.3921 | 0.09 | 1000 | 15.7845 | 0.4101 | 46.9030 |
0.3115 | 0.17 | 2000 | 14.2911 | 0.3353 | 41.8451 |
0.2659 | 0.26 | 3000 | 11.8131 | 0.2800 | 34.6406 |
0.2477 | 0.35 | 4000 | 10.6659 | 0.2578 | 32.0024 |
0.2274 | 0.43 | 5000 | 10.0460 | 0.2463 | 30.3419 |
0.2059 | 0.52 | 6000 | 9.9264 | 0.2305 | 28.5558 |
0.2092 | 0.61 | 7000 | 9.4277 | 0.2196 | 27.8785 |
0.1956 | 0.69 | 8000 | 9.2745 | 0.2093 | 26.8353 |
0.195 | 0.78 | 9000 | 8.9485 | 0.2042 | 26.6168 |
0.195 | 0.87 | 10000 | 8.5324 | 0.2001 | 25.6718 |
0.1795 | 0.95 | 11000 | 8.1786 | 0.1936 | 24.1698 |
0.1575 | 1.04 | 12000 | 7.8653 | 0.1915 | 23.8912 |
0.1358 | 1.13 | 13000 | 7.6749 | 0.1918 | 23.3778 |
0.1509 | 1.21 | 14000 | 7.7221 | 0.1852 | 23.1811 |
0.1474 | 1.3 | 15000 | 7.3246 | 0.1764 | 22.4984 |
0.1461 | 1.39 | 16000 | 7.3187 | 0.1793 | 22.4110 |
0.134 | 1.47 | 17000 | 7.1123 | 0.1737 | 21.9412 |
0.1289 | 1.56 | 18000 | 7.4593 | 0.1727 | 22.0614 |
0.1287 | 1.65 | 19000 | 7.0230 | 0.1701 | 21.4223 |
0.1196 | 1.73 | 20000 | 6.9447 | 0.1666 | 21.2475 |
0.1275 | 1.82 | 21000 | 6.7956 | 0.1653 | 20.8106 |
0.1329 | 1.91 | 22000 | 6.7729 | 0.1622 | 20.3354 |
0.1294 | 1.99 | 23000 | 6.6448 | 0.1606 | 20.2207 |
0.1043 | 2.08 | 24000 | 6.6010 | 0.1689 | 20.0240 |
0.079 | 2.17 | 25000 | 6.6246 | 0.1687 | 20.1005 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Datasets used to train shiv6146/whisper-large-v2-mn
Evaluation results
- Wer on Common Voice 11.0test set self-reported20.024
- Cer on Common Voice 11.0test set self-reported6.601