GPT2 for Code AutoComplete Model
code-autocomplete, a code completion plugin for Python.
code-autocomplete can automatically complete the code of lines and blocks with GPT2.
Usage
Open source repo:code-autocomplete,support GPT2 model, usage:
from autocomplete.gpt2_coder import GPT2Coder
m = GPT2Coder("shibing624/code-autocomplete-gpt2-base")
print(m.generate('import torch.nn as')[0])
Also, use huggingface/transformers:
Please use 'GPT2' related functions to load this model!
import os
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = GPT2Tokenizer.from_pretrained("shibing624/code-autocomplete-gpt2-base")
model = GPT2LMHeadModel.from_pretrained("shibing624/code-autocomplete-gpt2-base")
model.to(device)
prompts = [
"""from torch import nn
class LSTM(Module):
def __init__(self, *,
n_tokens: int,
embedding_size: int,
hidden_size: int,
n_layers: int):""",
"""import numpy as np
import torch
import torch.nn as""",
"import java.util.ArrayList",
"def factorial(n):",
]
for prompt in prompts:
input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors='pt').to(device)
outputs = model.generate(input_ids=input_ids,
max_length=64 + len(prompt),
temperature=1.0,
top_k=50,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
num_return_sequences=1,
length_penalty=2.0,
early_stopping=True)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded)
print("=" * 20)
output: ```shell from torch import nn class LSTM(Module): def init(self, *, n_tokens: int, embedding_size: int, hidden_size: int, n_layers: int): self.embedding_size = embedding_size
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F
Model files:
code-autocomplete-gpt2-base ├── config.json ├── merges.txt ├── pytorch_model.bin ├── special_tokens_map.json ├── tokenizer_config.json └── vocab.json
### Train data
#### pytorch_awesome projects source code
download [code-autocomplete](https://github.com/shibing624/code-autocomplete),
```shell
cd autocomplete
python create_dataset.py
If you want train code-autocomplete GPT2 model,refer https://github.com/shibing624/code-autocomplete/blob/main/autocomplete/gpt2_coder.py
About GPT2
Test the whole generation capabilities here: /static-proxy?url=https%3A%2F%2Ftransformer.huggingface.co%2Fdoc%2Fgpt2-large%3C%2Fa%3E%3C%2Fp%3E
Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in
this paper
and first released at this page. Disclaimer: The team releasing GPT-2 also wrote a
model card for their model. Content from this model card
has been written by the Hugging Face team to complete the information they provided and give specific examples of bias.
Citation
@misc{code-autocomplete,
author = {Xu Ming},
title = {code-autocomplete: Code AutoComplete with GPT model},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
url = {https://github.com/shibing624/code-autocomplete},
}
- Downloads last month
- 126