metadata
language:
- en
- bn
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- shhossain/rodela_dataset
metrics:
- accuracy
base_model: patrickvonplaten/wav2vec2_tiny_random
pipeline_tag: audio-classification
model-index:
- name: wav2vec2-tiny-random-rodela-classifier
results:
- task:
type: audio-classification
dataset:
name: rodela_dataset
type: test
metrics:
- type: accuracy
value: 0.91
name: accuracy
wav2vec2-tiny-random-rodela-classifier
This model is a fine-tuned version of patrickvonplaten/wav2vec2_tiny_random on shhossain/rodela_dataset dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.7650
- eval_accuracy: 0.9102
- eval_runtime: 0.2323
- eval_samples_per_second: 1054.546
- eval_steps_per_second: 133.432
- epoch: 37.0
- step: 4551
Model description
It classifies if a audio has rodela
in it.
Intended uses & limitations
It was designed for Wake Word Detection
.
How to use
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("audio-classification", model="shhossain/wav2vec2-tiny-random-rodela-classifier")
pipe("my_audio.mp3")
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- total_train_batch_size: 4.0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
- gradient_accumulation_steps: .5
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2