DareBeagle-7B

DareBeagle-7B is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: mlabonne/NeuralBeagle14-7B
        layer_range: [0, 32]
      - model: mlabonne/NeuralDaredevil-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/NeuralDaredevil-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.45 # fallback for rest of tensors
dtype: float16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "shadowml/DareBeagle-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 74.58
AI2 Reasoning Challenge (25-Shot) 71.67
HellaSwag (10-Shot) 88.01
MMLU (5-Shot) 65.03
TruthfulQA (0-shot) 68.98
Winogrande (5-shot) 82.32
GSM8k (5-shot) 71.49
Downloads last month
700
Safetensors
Model size
7.24B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shadowml/DareBeagle-7B

Quantizations
2 models

Evaluation results