bert-base-uncased-issues-128
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2377
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.1027 | 1.0 | 291 | 1.6979 |
1.634 | 2.0 | 582 | 1.5218 |
1.4939 | 3.0 | 873 | 1.3492 |
1.3985 | 4.0 | 1164 | 1.3259 |
1.3368 | 5.0 | 1455 | 1.2550 |
1.2702 | 6.0 | 1746 | 1.3513 |
1.2206 | 7.0 | 2037 | 1.2973 |
1.2052 | 8.0 | 2328 | 1.3334 |
1.1765 | 9.0 | 2619 | 1.2212 |
1.1321 | 10.0 | 2910 | 1.1668 |
1.1282 | 11.0 | 3201 | 1.1422 |
1.1004 | 12.0 | 3492 | 1.1982 |
1.0897 | 13.0 | 3783 | 1.2257 |
1.0749 | 14.0 | 4074 | 1.2107 |
1.0715 | 15.0 | 4365 | 1.2169 |
1.0492 | 16.0 | 4656 | 1.2377 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 2
Model tree for sh-zheng/bert-base-uncased-issues-128
Base model
google-bert/bert-base-uncased