metadata
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
model-index:
- name: dit-base-finetuned-brs
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8823529411764706
- name: F1
type: f1
value: 0.8571428571428571
dit-base-finetuned-brs
This model is a fine-tuned version of microsoft/dit-base on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8748
- Accuracy: 0.8824
- F1: 0.8571
- Precision (ppv): 0.8571
- Recall (sensitivity): 0.8571
- Specificity: 0.9
- Npv: 0.9
- Auc: 0.8786
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision (ppv) | Recall (sensitivity) | Specificity | Npv | Auc |
---|---|---|---|---|---|---|---|---|---|---|
0.6624 | 6.25 | 100 | 0.5548 | 0.8235 | 0.7692 | 0.8333 | 0.7143 | 0.9 | 0.8182 | 0.8071 |
0.5201 | 12.49 | 200 | 0.4617 | 0.8824 | 0.8571 | 0.8571 | 0.8571 | 0.9 | 0.9 | 0.8786 |
0.5172 | 18.74 | 300 | 0.4249 | 0.8235 | 0.8000 | 0.75 | 0.8571 | 0.8 | 0.8889 | 0.8286 |
0.4605 | 24.98 | 400 | 0.3172 | 0.8235 | 0.7692 | 0.8333 | 0.7143 | 0.9 | 0.8182 | 0.8071 |
0.4894 | 31.25 | 500 | 0.4466 | 0.8235 | 0.7692 | 0.8333 | 0.7143 | 0.9 | 0.8182 | 0.8071 |
0.3694 | 37.49 | 600 | 0.5077 | 0.8235 | 0.7692 | 0.8333 | 0.7143 | 0.9 | 0.8182 | 0.8071 |
0.6172 | 43.74 | 700 | 0.5722 | 0.7647 | 0.7143 | 0.7143 | 0.7143 | 0.8 | 0.8 | 0.7571 |
0.3671 | 49.98 | 800 | 0.7006 | 0.7647 | 0.6667 | 0.8 | 0.5714 | 0.9 | 0.75 | 0.7357 |
0.4109 | 56.25 | 900 | 0.4410 | 0.8235 | 0.7692 | 0.8333 | 0.7143 | 0.9 | 0.8182 | 0.8071 |
0.3198 | 62.49 | 1000 | 0.7226 | 0.8235 | 0.7692 | 0.8333 | 0.7143 | 0.9 | 0.8182 | 0.8071 |
0.4283 | 68.74 | 1100 | 0.8089 | 0.8235 | 0.7692 | 0.8333 | 0.7143 | 0.9 | 0.8182 | 0.8071 |
0.3273 | 74.98 | 1200 | 0.9059 | 0.7647 | 0.6667 | 0.8 | 0.5714 | 0.9 | 0.75 | 0.7357 |
0.3237 | 81.25 | 1300 | 0.8520 | 0.8235 | 0.7692 | 0.8333 | 0.7143 | 0.9 | 0.8182 | 0.8071 |
0.2014 | 87.49 | 1400 | 0.9183 | 0.7647 | 0.6667 | 0.8 | 0.5714 | 0.9 | 0.75 | 0.7357 |
0.3204 | 93.74 | 1500 | 0.6769 | 0.8824 | 0.8571 | 0.8571 | 0.8571 | 0.9 | 0.9 | 0.8786 |
0.1786 | 99.98 | 1600 | 0.8748 | 0.8824 | 0.8571 | 0.8571 | 0.8571 | 0.9 | 0.9 | 0.8786 |
Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1