metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
model-index:
- name: convnext-tiny-224-finetuned-brs
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8235294117647058
- name: F1
type: f1
value: 0.7272727272727272
convnext-tiny-224-finetuned-brs
This model is a fine-tuned version of facebook/convnext-tiny-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8667
- Accuracy: 0.8235
- F1: 0.7273
- Precision (ppv): 0.8
- Recall (sensitivity): 0.6667
- Specificity: 0.9091
- Npv: 0.8333
- Auc: 0.7879
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision (ppv) | Recall (sensitivity) | Specificity | Npv | Auc |
---|---|---|---|---|---|---|---|---|---|---|
0.6766 | 6.25 | 100 | 0.7002 | 0.4706 | 0.5263 | 0.3846 | 0.8333 | 0.2727 | 0.75 | 0.5530 |
0.6408 | 12.49 | 200 | 0.6770 | 0.6471 | 0.5714 | 0.5 | 0.6667 | 0.6364 | 0.7778 | 0.6515 |
0.464 | 18.74 | 300 | 0.6624 | 0.5882 | 0.5882 | 0.4545 | 0.8333 | 0.4545 | 0.8333 | 0.6439 |
0.4295 | 24.98 | 400 | 0.6938 | 0.5294 | 0.5 | 0.4 | 0.6667 | 0.4545 | 0.7143 | 0.5606 |
0.3952 | 31.25 | 500 | 0.5974 | 0.7059 | 0.6154 | 0.5714 | 0.6667 | 0.7273 | 0.8 | 0.6970 |
0.1082 | 37.49 | 600 | 0.6163 | 0.6471 | 0.5 | 0.5 | 0.5 | 0.7273 | 0.7273 | 0.6136 |
0.1997 | 43.74 | 700 | 0.6155 | 0.7059 | 0.6154 | 0.5714 | 0.6667 | 0.7273 | 0.8 | 0.6970 |
0.1267 | 49.98 | 800 | 0.9063 | 0.6471 | 0.5714 | 0.5 | 0.6667 | 0.6364 | 0.7778 | 0.6515 |
0.1178 | 56.25 | 900 | 0.8672 | 0.7059 | 0.6667 | 0.5556 | 0.8333 | 0.6364 | 0.875 | 0.7348 |
0.2008 | 62.49 | 1000 | 0.7049 | 0.8235 | 0.7692 | 0.7143 | 0.8333 | 0.8182 | 0.9 | 0.8258 |
0.0996 | 68.74 | 1100 | 0.4510 | 0.8235 | 0.7692 | 0.7143 | 0.8333 | 0.8182 | 0.9 | 0.8258 |
0.0115 | 74.98 | 1200 | 0.7561 | 0.8235 | 0.7692 | 0.7143 | 0.8333 | 0.8182 | 0.9 | 0.8258 |
0.0177 | 81.25 | 1300 | 1.0400 | 0.7059 | 0.6667 | 0.5556 | 0.8333 | 0.6364 | 0.875 | 0.7348 |
0.0261 | 87.49 | 1400 | 0.9139 | 0.8235 | 0.7692 | 0.7143 | 0.8333 | 0.8182 | 0.9 | 0.8258 |
0.028 | 93.74 | 1500 | 0.7367 | 0.7647 | 0.7143 | 0.625 | 0.8333 | 0.7273 | 0.8889 | 0.7803 |
0.0056 | 99.98 | 1600 | 0.8667 | 0.8235 | 0.7273 | 0.8 | 0.6667 | 0.9091 | 0.8333 | 0.7879 |
Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1