sergiocannata's picture
update model card README.md
d9e3c72
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
model-index:
  - name: convnext-tiny-224-finetuned-brs
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8235294117647058
          - name: F1
            type: f1
            value: 0.7272727272727272

convnext-tiny-224-finetuned-brs

This model is a fine-tuned version of facebook/convnext-tiny-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8667
  • Accuracy: 0.8235
  • F1: 0.7273
  • Precision (ppv): 0.8
  • Recall (sensitivity): 0.6667
  • Specificity: 0.9091
  • Npv: 0.8333
  • Auc: 0.7879

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision (ppv) Recall (sensitivity) Specificity Npv Auc
0.6766 6.25 100 0.7002 0.4706 0.5263 0.3846 0.8333 0.2727 0.75 0.5530
0.6408 12.49 200 0.6770 0.6471 0.5714 0.5 0.6667 0.6364 0.7778 0.6515
0.464 18.74 300 0.6624 0.5882 0.5882 0.4545 0.8333 0.4545 0.8333 0.6439
0.4295 24.98 400 0.6938 0.5294 0.5 0.4 0.6667 0.4545 0.7143 0.5606
0.3952 31.25 500 0.5974 0.7059 0.6154 0.5714 0.6667 0.7273 0.8 0.6970
0.1082 37.49 600 0.6163 0.6471 0.5 0.5 0.5 0.7273 0.7273 0.6136
0.1997 43.74 700 0.6155 0.7059 0.6154 0.5714 0.6667 0.7273 0.8 0.6970
0.1267 49.98 800 0.9063 0.6471 0.5714 0.5 0.6667 0.6364 0.7778 0.6515
0.1178 56.25 900 0.8672 0.7059 0.6667 0.5556 0.8333 0.6364 0.875 0.7348
0.2008 62.49 1000 0.7049 0.8235 0.7692 0.7143 0.8333 0.8182 0.9 0.8258
0.0996 68.74 1100 0.4510 0.8235 0.7692 0.7143 0.8333 0.8182 0.9 0.8258
0.0115 74.98 1200 0.7561 0.8235 0.7692 0.7143 0.8333 0.8182 0.9 0.8258
0.0177 81.25 1300 1.0400 0.7059 0.6667 0.5556 0.8333 0.6364 0.875 0.7348
0.0261 87.49 1400 0.9139 0.8235 0.7692 0.7143 0.8333 0.8182 0.9 0.8258
0.028 93.74 1500 0.7367 0.7647 0.7143 0.625 0.8333 0.7273 0.8889 0.7803
0.0056 99.98 1600 0.8667 0.8235 0.7273 0.8 0.6667 0.9091 0.8333 0.7879

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1