metadata
language:
- ru
pipeline_tag: sentence-similarity
tags:
- russian
- pretraining
- embeddings
- tiny
- feature-extraction
- sentence-similarity
- sentence-transformers
- transformers
datasets:
- IlyaGusev/gazeta
- zloelias/lenta-ru
license: mit
base_model: cointegrated/rubert-tiny2
Быстрая модель BERT для расчетов эмбедингов предложений на русском языке. Модель основана на cointegrated/rubert-tiny2 - имеет аналогичные размеры контекста (2048), ембединга (312) и быстродействие.
Использование:
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('sergeyzh/rubert-tiny-turbo')
sentences = ["привет мир", "hello world", "здравствуй вселенная"]
embeddings = model.encode(sentences)
print(util.dot_score(embeddings, embeddings))
Метрики
Оценки модели на бенчмарке encodechka:
model | CPU | GPU | size | Mean S | Mean S+W | dim |
---|---|---|---|---|---|---|
BAAI/bge-m3 | 523.40 | 22.50 | 2166 | 0.787 | 0.696 | 1024 |
intfloat/multilingual-e5-large | 506.80 | 30.80 | 2136 | 0.780 | 0.686 | 1024 |
intfloat/multilingual-e5-base | 130.61 | 14.39 | 1061 | 0.761 | 0.669 | 768 |
sergeyzh/rubert-tiny-turbo | 5.51 | 3.25 | 111 | 0.749 | 0.667 | 312 |
intfloat/multilingual-e5-small | 40.86 | 12.09 | 449 | 0.742 | 0.645 | 384 |
cointegrated/rubert-tiny2 | 5.51 | 3.25 | 111 | 0.704 | 0.638 | 312 |
model | STS | PI | NLI | SA | TI | IA | IC | ICX | NE1 | NE2 |
---|---|---|---|---|---|---|---|---|---|---|
BAAI/bge-m3 | 0.864 | 0.749 | 0.510 | 0.819 | 0.973 | 0.792 | 0.809 | 0.783 | 0.240 | 0.422 |
intfloat/multilingual-e5-large | 0.862 | 0.727 | 0.473 | 0.810 | 0.979 | 0.798 | 0.819 | 0.773 | 0.224 | 0.374 |
intfloat/multilingual-e5-base | 0.835 | 0.704 | 0.459 | 0.796 | 0.964 | 0.783 | 0.802 | 0.738 | 0.235 | 0.376 |
sergeyzh/rubert-tiny-turbo | 0.828 | 0.722 | 0.476 | 0.787 | 0.955 | 0.757 | 0.780 | 0.685 | 0.305 | 0.373 |
intfloat/multilingual-e5-small | 0.822 | 0.714 | 0.457 | 0.758 | 0.957 | 0.761 | 0.779 | 0.691 | 0.234 | 0.275 |
cointegrated/rubert-tiny2 | 0.750 | 0.651 | 0.417 | 0.737 | 0.937 | 0.746 | 0.757 | 0.638 | 0.360 | 0.386 |