SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seongil-dn/bge-m3-kor-retrieval-bs1024-checkpoint-118")
# Run inference
sentences = [
'전남지역의 석유와 화학제품은 왜 수출이 늘어나는 경향을 보였어',
'(2) 전남지역\n2013년중 전남지역 수출은 전년대비 1.2% 감소로 전환하였다. 품목별로는 석유(+9.3% → +3.8%) 및 화학제품(+1.2% → +7.1%)이 중국 등 해외수요확대로 증가세를 지속하였으나 철강금속(+1.8% → -8.6%)은 글로벌 공급과잉 및 중국의 저가 철강수출 확대로, 선박(+7.6% → -49.2%)은 수주물량이 급격히 줄어들면서 감소로 전환하였다. 전남지역 수입은 원유, 화학제품, 철강금속 등의 수입이 줄면서 전년대비 7.4% 감소로 전환하였다.',
'수출 증가세 지속\n1/4분기 중 수출은 전년동기대비 증가흐름을 지속하였다. 품목별로 보면 석유제품, 석유화학, 철강, 선박, 반도체, 자동차 등 대다수 품목에서 증가하였다. 석유제품은 글로벌 경기회복에 따른 에너지 수요 증가와 국제유가 급등으로 수출단가가 높은 상승세를 지속하면서 증가하였다. 석유화학도 중국, 아세안을 중심으로 합성수지, 고무 등의 수출이 큰 폭 증가한 데다 고유가로 인한 수출가격도 동반 상승하면서 증가세를 이어갔다. 철강은 건설, 조선 등 글로벌 전방산업의 수요 증대, 원자재가격 상승 및 중국 감산 등에 따른 수출단가 상승 등에 힘입어 증가세를 이어갔다. 선박은 1/4분기 중 인도물량이 확대됨에 따라 증가하였다. 반도체는 자동차 등 전방산업의 견조한 수요가 이어지는 가운데 전년동기대비로 높은 단가가 지속되면서 증가하였다. 자동차는 차량용 반도체 수급차질이 지속되었음에도 불구하고 글로벌 경기회복 흐름에 따라 수요가 늘어나면서 전년동기대비 소폭 증가하였다. 모니터링 결과 향후 수출은 증가세가 지속될 것으로 전망되었다. 석유화학 및 석유정제는 수출단가 상승과 전방산업의 수요확대 기조가 이어지면서 증가할 전망이다. 철강은 주요국 경기회복과 중국, 인도 등의 인프라 투자 확대 등으로 양호한 흐름을 이어갈 전망이다. 반도체는 글로벌 스마트폰 수요 회복, 디지털 전환 기조 등으로 견조한 증가세를 지속할 것으로 보인다. 자동차는 차량용 반도체 공급차질이 점차 완화되고 미국, 신흥시장을 중심으로 수요회복이 본격화됨에 따라 소폭 증가할 전망이다. 선박은 친환경 선박수요 지속, 글로별 교역 신장 등에도 불구하고 2021년 2/4분기 집중되었던 인도물량의 기저효과로 인해 감소할 것으로 보인다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 512learning_rate
: 3e-05num_train_epochs
: 5warmup_ratio
: 0.05fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0085 | 1 | 2.0476 |
0.0171 | 2 | 2.0595 |
0.0256 | 3 | 2.0267 |
0.0342 | 4 | 2.0971 |
0.0427 | 5 | 2.2171 |
0.0513 | 6 | 2.287 |
0.0598 | 7 | 2.0867 |
0.0684 | 8 | 1.9498 |
0.0769 | 9 | 1.569 |
0.0855 | 10 | 1.3313 |
0.0940 | 11 | 1.4122 |
0.1026 | 12 | 1.3425 |
0.1111 | 13 | 1.1936 |
0.1197 | 14 | 0.8012 |
0.1282 | 15 | 0.8862 |
0.1368 | 16 | 1.193 |
0.1453 | 17 | 0.9771 |
0.1538 | 18 | 0.3887 |
0.1624 | 19 | 0.363 |
0.1709 | 20 | 0.3092 |
0.1795 | 21 | 0.2692 |
0.1880 | 22 | 0.2386 |
0.1966 | 23 | 0.2266 |
0.2051 | 24 | 0.233 |
0.2137 | 25 | 0.2214 |
0.2222 | 26 | 0.2038 |
0.2308 | 27 | 0.2015 |
0.2393 | 28 | 0.1772 |
0.2479 | 29 | 0.1697 |
0.2564 | 30 | 0.1718 |
0.2650 | 31 | 0.2456 |
0.2735 | 32 | 0.5238 |
0.2821 | 33 | 0.5308 |
0.2906 | 34 | 0.5111 |
0.2991 | 35 | 0.3931 |
0.3077 | 36 | 0.3414 |
0.3162 | 37 | 0.2704 |
0.3248 | 38 | 0.2949 |
0.3333 | 39 | 0.3082 |
0.3419 | 40 | 0.3755 |
0.3504 | 41 | 0.3127 |
0.3590 | 42 | 0.3756 |
0.3675 | 43 | 0.3564 |
0.3761 | 44 | 0.3905 |
0.3846 | 45 | 0.377 |
0.3932 | 46 | 0.3043 |
0.4017 | 47 | 0.3237 |
0.4103 | 48 | 0.4035 |
0.4188 | 49 | 0.4522 |
0.4274 | 50 | 0.4392 |
0.4359 | 51 | 0.4482 |
0.4444 | 52 | 0.3586 |
0.4530 | 53 | 0.3154 |
0.4615 | 54 | 0.4053 |
0.4701 | 55 | 0.5846 |
0.4786 | 56 | 0.4372 |
0.4872 | 57 | 0.6201 |
0.4957 | 58 | 0.5278 |
0.5043 | 59 | 0.4844 |
0.5128 | 60 | 0.5817 |
0.5214 | 61 | 0.3765 |
0.5299 | 62 | 0.4785 |
0.5385 | 63 | 0.5724 |
0.5470 | 64 | 0.5375 |
0.5556 | 65 | 0.5362 |
0.5641 | 66 | 0.4731 |
0.5726 | 67 | 0.4514 |
0.5812 | 68 | 0.4563 |
0.5897 | 69 | 0.4198 |
0.5983 | 70 | 0.4086 |
0.6068 | 71 | 0.3612 |
0.6154 | 72 | 0.3463 |
0.6239 | 73 | 0.6261 |
0.6325 | 74 | 0.6283 |
0.6410 | 75 | 0.4635 |
0.6496 | 76 | 0.463 |
0.6581 | 77 | 0.4075 |
0.6667 | 78 | 0.3797 |
0.6752 | 79 | 0.2769 |
0.6838 | 80 | 0.3353 |
0.6923 | 81 | 0.2295 |
0.7009 | 82 | 0.4316 |
0.7094 | 83 | 0.9861 |
0.7179 | 84 | 0.9684 |
0.7265 | 85 | 0.9883 |
0.7350 | 86 | 0.8865 |
0.7436 | 87 | 0.8248 |
0.7521 | 88 | 0.7973 |
0.7607 | 89 | 0.8465 |
0.7692 | 90 | 0.7664 |
0.7778 | 91 | 0.7643 |
0.7863 | 92 | 0.7665 |
0.7949 | 93 | 0.7348 |
0.8034 | 94 | 0.7493 |
0.8120 | 95 | 0.6115 |
0.8205 | 96 | 0.6233 |
0.8291 | 97 | 0.6435 |
0.8376 | 98 | 0.5581 |
0.8462 | 99 | 0.542 |
0.8547 | 100 | 0.5571 |
0.8632 | 101 | 0.502 |
0.8718 | 102 | 0.5375 |
0.8803 | 103 | 0.4952 |
0.8889 | 104 | 0.4873 |
0.8974 | 105 | 0.4599 |
0.9060 | 106 | 0.4536 |
0.9145 | 107 | 0.4479 |
0.9231 | 108 | 0.384 |
0.9316 | 109 | 0.3523 |
0.9402 | 110 | 0.369 |
0.9487 | 111 | 0.3422 |
0.9573 | 112 | 0.3698 |
0.9658 | 113 | 0.3625 |
0.9744 | 114 | 0.3736 |
0.9829 | 115 | 0.4313 |
0.9915 | 116 | 0.4605 |
1.0 | 117 | 0.2948 |
1.0085 | 118 | 0.7391 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.3.1+cu121
- Accelerate: 1.1.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for seongil-dn/bge-m3-kor-retrieval-bs1024-checkpoint-118
Base model
BAAI/bge-m3