Files changed (1) hide show
  1. README.md +2840 -3
README.md CHANGED
@@ -4,6 +4,7 @@ tags:
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
 
7
  language: en
8
  license: apache-2.0
9
  datasets:
@@ -28,10 +29,2846 @@ datasets:
28
  - embedding-data/SPECTER
29
  - embedding-data/PAQ_pairs
30
  - embedding-data/WikiAnswers
31
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ---
33
 
34
-
35
  # all-MiniLM-L6-v2
36
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
37
 
@@ -93,7 +2930,7 @@ print(sentence_embeddings)
93
 
94
  ## Evaluation Results
95
 
96
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2)
97
 
98
  ------
99
 
 
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
+ - mteb
8
  language: en
9
  license: apache-2.0
10
  datasets:
 
29
  - embedding-data/SPECTER
30
  - embedding-data/PAQ_pairs
31
  - embedding-data/WikiAnswers
32
+ model-index:
33
+ - name: all-MiniLM-L6-v2
34
+ results:
35
+ - task:
36
+ type: Classification
37
+ dataset:
38
+ type: mteb/amazon_counterfactual
39
+ name: MTEB AmazonCounterfactualClassification (en)
40
+ config: en
41
+ split: test
42
+ revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
43
+ metrics:
44
+ - type: accuracy
45
+ value: 64.14925373134331
46
+ - type: ap
47
+ value: 27.237875815186907
48
+ - type: f1
49
+ value: 58.03105716318715
50
+ - task:
51
+ type: Classification
52
+ dataset:
53
+ type: mteb/amazon_polarity
54
+ name: MTEB AmazonPolarityClassification
55
+ config: default
56
+ split: test
57
+ revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1
58
+ metrics:
59
+ - type: accuracy
60
+ value: 62.582975
61
+ - type: ap
62
+ value: 58.26562634146188
63
+ - type: f1
64
+ value: 62.304673961004156
65
+ - task:
66
+ type: Classification
67
+ dataset:
68
+ type: mteb/amazon_reviews_multi
69
+ name: MTEB AmazonReviewsClassification (en)
70
+ config: en
71
+ split: test
72
+ revision: c379a6705fec24a2493fa68e011692605f44e119
73
+ metrics:
74
+ - type: accuracy
75
+ value: 31.785999999999998
76
+ - type: f1
77
+ value: 31.40726949960717
78
+ - task:
79
+ type: Retrieval
80
+ dataset:
81
+ type: arguana
82
+ name: MTEB ArguAna
83
+ config: default
84
+ split: test
85
+ revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3
86
+ metrics:
87
+ - type: map_at_1
88
+ value: 25.605
89
+ - type: map_at_10
90
+ value: 41.165
91
+ - type: map_at_100
92
+ value: 42.230000000000004
93
+ - type: map_at_1000
94
+ value: 42.241
95
+ - type: map_at_3
96
+ value: 35.965
97
+ - type: map_at_5
98
+ value: 38.981
99
+ - type: ndcg_at_1
100
+ value: 25.605
101
+ - type: ndcg_at_10
102
+ value: 50.166999999999994
103
+ - type: ndcg_at_100
104
+ value: 54.534000000000006
105
+ - type: ndcg_at_1000
106
+ value: 54.772
107
+ - type: ndcg_at_3
108
+ value: 39.434000000000005
109
+ - type: ndcg_at_5
110
+ value: 44.876
111
+ - type: precision_at_1
112
+ value: 25.605
113
+ - type: precision_at_10
114
+ value: 7.908999999999999
115
+ - type: precision_at_100
116
+ value: 0.9769999999999999
117
+ - type: precision_at_1000
118
+ value: 0.1
119
+ - type: precision_at_3
120
+ value: 16.500999999999998
121
+ - type: precision_at_5
122
+ value: 12.546
123
+ - type: recall_at_1
124
+ value: 25.605
125
+ - type: recall_at_10
126
+ value: 79.09
127
+ - type: recall_at_100
128
+ value: 97.724
129
+ - type: recall_at_1000
130
+ value: 99.502
131
+ - type: recall_at_3
132
+ value: 49.502
133
+ - type: recall_at_5
134
+ value: 62.731
135
+ - task:
136
+ type: Clustering
137
+ dataset:
138
+ type: mteb/arxiv-clustering-p2p
139
+ name: MTEB ArxivClusteringP2P
140
+ config: default
141
+ split: test
142
+ revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8
143
+ metrics:
144
+ - type: v_measure
145
+ value: 46.54595079050156
146
+ - task:
147
+ type: Clustering
148
+ dataset:
149
+ type: mteb/arxiv-clustering-s2s
150
+ name: MTEB ArxivClusteringS2S
151
+ config: default
152
+ split: test
153
+ revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3
154
+ metrics:
155
+ - type: v_measure
156
+ value: 37.85709823840442
157
+ - task:
158
+ type: Reranking
159
+ dataset:
160
+ type: mteb/askubuntudupquestions-reranking
161
+ name: MTEB AskUbuntuDupQuestions
162
+ config: default
163
+ split: test
164
+ revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c
165
+ metrics:
166
+ - type: map
167
+ value: 63.47681681237331
168
+ - type: mrr
169
+ value: 77.08657608934617
170
+ - task:
171
+ type: STS
172
+ dataset:
173
+ type: mteb/biosses-sts
174
+ name: MTEB BIOSSES
175
+ config: default
176
+ split: test
177
+ revision: 9ee918f184421b6bd48b78f6c714d86546106103
178
+ metrics:
179
+ - type: cos_sim_pearson
180
+ value: 84.41897516342782
181
+ - type: cos_sim_spearman
182
+ value: 81.64041444909368
183
+ - type: euclidean_pearson
184
+ value: 82.67500318274435
185
+ - type: euclidean_spearman
186
+ value: 81.64041444909368
187
+ - type: manhattan_pearson
188
+ value: 82.35165974372227
189
+ - type: manhattan_spearman
190
+ value: 81.50968857884978
191
+ - task:
192
+ type: Classification
193
+ dataset:
194
+ type: mteb/banking77
195
+ name: MTEB Banking77Classification
196
+ config: default
197
+ split: test
198
+ revision: 44fa15921b4c889113cc5df03dd4901b49161ab7
199
+ metrics:
200
+ - type: accuracy
201
+ value: 79.75000000000001
202
+ - type: f1
203
+ value: 78.92604185699534
204
+ - task:
205
+ type: Clustering
206
+ dataset:
207
+ type: mteb/biorxiv-clustering-p2p
208
+ name: MTEB BiorxivClusteringP2P
209
+ config: default
210
+ split: test
211
+ revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55
212
+ metrics:
213
+ - type: v_measure
214
+ value: 38.48301914135123
215
+ - task:
216
+ type: Clustering
217
+ dataset:
218
+ type: mteb/biorxiv-clustering-s2s
219
+ name: MTEB BiorxivClusteringS2S
220
+ config: default
221
+ split: test
222
+ revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1
223
+ metrics:
224
+ - type: v_measure
225
+ value: 33.170209943399804
226
+ - task:
227
+ type: Retrieval
228
+ dataset:
229
+ type: BeIR/cqadupstack
230
+ name: MTEB CQADupstackAndroidRetrieval
231
+ config: default
232
+ split: test
233
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
234
+ metrics:
235
+ - type: map_at_1
236
+ value: 34.660000000000004
237
+ - type: map_at_10
238
+ value: 46.938
239
+ - type: map_at_100
240
+ value: 48.435
241
+ - type: map_at_1000
242
+ value: 48.555
243
+ - type: map_at_3
244
+ value: 43.034
245
+ - type: map_at_5
246
+ value: 45.055
247
+ - type: ndcg_at_1
248
+ value: 42.775
249
+ - type: ndcg_at_10
250
+ value: 53.82900000000001
251
+ - type: ndcg_at_100
252
+ value: 58.74700000000001
253
+ - type: ndcg_at_1000
254
+ value: 60.309000000000005
255
+ - type: ndcg_at_3
256
+ value: 48.487
257
+ - type: ndcg_at_5
258
+ value: 50.722
259
+ - type: precision_at_1
260
+ value: 42.775
261
+ - type: precision_at_10
262
+ value: 10.629
263
+ - type: precision_at_100
264
+ value: 1.652
265
+ - type: precision_at_1000
266
+ value: 0.209
267
+ - type: precision_at_3
268
+ value: 23.366999999999997
269
+ - type: precision_at_5
270
+ value: 16.967
271
+ - type: recall_at_1
272
+ value: 34.660000000000004
273
+ - type: recall_at_10
274
+ value: 66.465
275
+ - type: recall_at_100
276
+ value: 87.559
277
+ - type: recall_at_1000
278
+ value: 97.18299999999999
279
+ - type: recall_at_3
280
+ value: 51.01
281
+ - type: recall_at_5
282
+ value: 57.412
283
+ - task:
284
+ type: Retrieval
285
+ dataset:
286
+ type: BeIR/cqadupstack
287
+ name: MTEB CQADupstackEnglishRetrieval
288
+ config: default
289
+ split: test
290
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
291
+ metrics:
292
+ - type: map_at_1
293
+ value: 31.180999999999997
294
+ - type: map_at_10
295
+ value: 41.802
296
+ - type: map_at_100
297
+ value: 43.294
298
+ - type: map_at_1000
299
+ value: 43.438
300
+ - type: map_at_3
301
+ value: 38.668
302
+ - type: map_at_5
303
+ value: 40.559
304
+ - type: ndcg_at_1
305
+ value: 39.489999999999995
306
+ - type: ndcg_at_10
307
+ value: 47.776
308
+ - type: ndcg_at_100
309
+ value: 52.705
310
+ - type: ndcg_at_1000
311
+ value: 54.830999999999996
312
+ - type: ndcg_at_3
313
+ value: 43.649
314
+ - type: ndcg_at_5
315
+ value: 45.885
316
+ - type: precision_at_1
317
+ value: 39.489999999999995
318
+ - type: precision_at_10
319
+ value: 9.121
320
+ - type: precision_at_100
321
+ value: 1.504
322
+ - type: precision_at_1000
323
+ value: 0.2
324
+ - type: precision_at_3
325
+ value: 21.38
326
+ - type: precision_at_5
327
+ value: 15.35
328
+ - type: recall_at_1
329
+ value: 31.180999999999997
330
+ - type: recall_at_10
331
+ value: 57.714
332
+ - type: recall_at_100
333
+ value: 78.342
334
+ - type: recall_at_1000
335
+ value: 91.586
336
+ - type: recall_at_3
337
+ value: 45.255
338
+ - type: recall_at_5
339
+ value: 51.459999999999994
340
+ - task:
341
+ type: Retrieval
342
+ dataset:
343
+ type: BeIR/cqadupstack
344
+ name: MTEB CQADupstackGamingRetrieval
345
+ config: default
346
+ split: test
347
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
348
+ metrics:
349
+ - type: map_at_1
350
+ value: 38.732
351
+ - type: map_at_10
352
+ value: 51.03
353
+ - type: map_at_100
354
+ value: 52.078
355
+ - type: map_at_1000
356
+ value: 52.132
357
+ - type: map_at_3
358
+ value: 47.735
359
+ - type: map_at_5
360
+ value: 49.562
361
+ - type: ndcg_at_1
362
+ value: 44.074999999999996
363
+ - type: ndcg_at_10
364
+ value: 56.923
365
+ - type: ndcg_at_100
366
+ value: 61.004999999999995
367
+ - type: ndcg_at_1000
368
+ value: 62.12800000000001
369
+ - type: ndcg_at_3
370
+ value: 51.381
371
+ - type: ndcg_at_5
372
+ value: 54.027
373
+ - type: precision_at_1
374
+ value: 44.074999999999996
375
+ - type: precision_at_10
376
+ value: 9.21
377
+ - type: precision_at_100
378
+ value: 1.221
379
+ - type: precision_at_1000
380
+ value: 0.136
381
+ - type: precision_at_3
382
+ value: 23.009
383
+ - type: precision_at_5
384
+ value: 15.748999999999999
385
+ - type: recall_at_1
386
+ value: 38.732
387
+ - type: recall_at_10
388
+ value: 71.154
389
+ - type: recall_at_100
390
+ value: 88.676
391
+ - type: recall_at_1000
392
+ value: 96.718
393
+ - type: recall_at_3
394
+ value: 56.288000000000004
395
+ - type: recall_at_5
396
+ value: 62.792
397
+ - task:
398
+ type: Retrieval
399
+ dataset:
400
+ type: BeIR/cqadupstack
401
+ name: MTEB CQADupstackGisRetrieval
402
+ config: default
403
+ split: test
404
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
405
+ metrics:
406
+ - type: map_at_1
407
+ value: 26.837
408
+ - type: map_at_10
409
+ value: 35.959
410
+ - type: map_at_100
411
+ value: 37.172
412
+ - type: map_at_1000
413
+ value: 37.241
414
+ - type: map_at_3
415
+ value: 33.027
416
+ - type: map_at_5
417
+ value: 34.699000000000005
418
+ - type: ndcg_at_1
419
+ value: 29.378999999999998
420
+ - type: ndcg_at_10
421
+ value: 41.31
422
+ - type: ndcg_at_100
423
+ value: 47.058
424
+ - type: ndcg_at_1000
425
+ value: 48.777
426
+ - type: ndcg_at_3
427
+ value: 35.564
428
+ - type: ndcg_at_5
429
+ value: 38.384
430
+ - type: precision_at_1
431
+ value: 29.378999999999998
432
+ - type: precision_at_10
433
+ value: 6.361999999999999
434
+ - type: precision_at_100
435
+ value: 0.98
436
+ - type: precision_at_1000
437
+ value: 0.117
438
+ - type: precision_at_3
439
+ value: 15.028
440
+ - type: precision_at_5
441
+ value: 10.667
442
+ - type: recall_at_1
443
+ value: 26.837
444
+ - type: recall_at_10
445
+ value: 55.667
446
+ - type: recall_at_100
447
+ value: 81.843
448
+ - type: recall_at_1000
449
+ value: 94.707
450
+ - type: recall_at_3
451
+ value: 40.049
452
+ - type: recall_at_5
453
+ value: 46.92
454
+ - task:
455
+ type: Retrieval
456
+ dataset:
457
+ type: BeIR/cqadupstack
458
+ name: MTEB CQADupstackMathematicaRetrieval
459
+ config: default
460
+ split: test
461
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
462
+ metrics:
463
+ - type: map_at_1
464
+ value: 15.142
465
+ - type: map_at_10
466
+ value: 23.727999999999998
467
+ - type: map_at_100
468
+ value: 25.137999999999998
469
+ - type: map_at_1000
470
+ value: 25.256
471
+ - type: map_at_3
472
+ value: 20.673
473
+ - type: map_at_5
474
+ value: 22.325999999999997
475
+ - type: ndcg_at_1
476
+ value: 18.407999999999998
477
+ - type: ndcg_at_10
478
+ value: 29.286
479
+ - type: ndcg_at_100
480
+ value: 35.753
481
+ - type: ndcg_at_1000
482
+ value: 38.541
483
+ - type: ndcg_at_3
484
+ value: 23.599
485
+ - type: ndcg_at_5
486
+ value: 26.262
487
+ - type: precision_at_1
488
+ value: 18.407999999999998
489
+ - type: precision_at_10
490
+ value: 5.697
491
+ - type: precision_at_100
492
+ value: 1.034
493
+ - type: precision_at_1000
494
+ value: 0.14100000000000001
495
+ - type: precision_at_3
496
+ value: 11.567
497
+ - type: precision_at_5
498
+ value: 8.781
499
+ - type: recall_at_1
500
+ value: 15.142
501
+ - type: recall_at_10
502
+ value: 42.476
503
+ - type: recall_at_100
504
+ value: 70.22699999999999
505
+ - type: recall_at_1000
506
+ value: 90.02799999999999
507
+ - type: recall_at_3
508
+ value: 27.056
509
+ - type: recall_at_5
510
+ value: 33.663
511
+ - task:
512
+ type: Retrieval
513
+ dataset:
514
+ type: BeIR/cqadupstack
515
+ name: MTEB CQADupstackPhysicsRetrieval
516
+ config: default
517
+ split: test
518
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
519
+ metrics:
520
+ - type: map_at_1
521
+ value: 29.142000000000003
522
+ - type: map_at_10
523
+ value: 40.735
524
+ - type: map_at_100
525
+ value: 42.155
526
+ - type: map_at_1000
527
+ value: 42.27
528
+ - type: map_at_3
529
+ value: 37.491
530
+ - type: map_at_5
531
+ value: 39.475
532
+ - type: ndcg_at_1
533
+ value: 35.515
534
+ - type: ndcg_at_10
535
+ value: 46.982
536
+ - type: ndcg_at_100
537
+ value: 52.913
538
+ - type: ndcg_at_1000
539
+ value: 54.759
540
+ - type: ndcg_at_3
541
+ value: 42.164
542
+ - type: ndcg_at_5
543
+ value: 44.674
544
+ - type: precision_at_1
545
+ value: 35.515
546
+ - type: precision_at_10
547
+ value: 8.624
548
+ - type: precision_at_100
549
+ value: 1.377
550
+ - type: precision_at_1000
551
+ value: 0.173
552
+ - type: precision_at_3
553
+ value: 20.468
554
+ - type: precision_at_5
555
+ value: 14.649000000000001
556
+ - type: recall_at_1
557
+ value: 29.142000000000003
558
+ - type: recall_at_10
559
+ value: 59.693
560
+ - type: recall_at_100
561
+ value: 84.84899999999999
562
+ - type: recall_at_1000
563
+ value: 96.451
564
+ - type: recall_at_3
565
+ value: 46.086
566
+ - type: recall_at_5
567
+ value: 52.556000000000004
568
+ - task:
569
+ type: Retrieval
570
+ dataset:
571
+ type: BeIR/cqadupstack
572
+ name: MTEB CQADupstackProgrammersRetrieval
573
+ config: default
574
+ split: test
575
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
576
+ metrics:
577
+ - type: map_at_1
578
+ value: 22.081999999999997
579
+ - type: map_at_10
580
+ value: 32.74
581
+ - type: map_at_100
582
+ value: 34.108
583
+ - type: map_at_1000
584
+ value: 34.233000000000004
585
+ - type: map_at_3
586
+ value: 29.282999999999998
587
+ - type: map_at_5
588
+ value: 31.127
589
+ - type: ndcg_at_1
590
+ value: 26.712000000000003
591
+ - type: ndcg_at_10
592
+ value: 38.968
593
+ - type: ndcg_at_100
594
+ value: 44.64
595
+ - type: ndcg_at_1000
596
+ value: 47.193000000000005
597
+ - type: ndcg_at_3
598
+ value: 33.311
599
+ - type: ndcg_at_5
600
+ value: 35.76
601
+ - type: precision_at_1
602
+ value: 26.712000000000003
603
+ - type: precision_at_10
604
+ value: 7.534000000000001
605
+ - type: precision_at_100
606
+ value: 1.2149999999999999
607
+ - type: precision_at_1000
608
+ value: 0.163
609
+ - type: precision_at_3
610
+ value: 16.476
611
+ - type: precision_at_5
612
+ value: 12.009
613
+ - type: recall_at_1
614
+ value: 22.081999999999997
615
+ - type: recall_at_10
616
+ value: 52.859
617
+ - type: recall_at_100
618
+ value: 76.812
619
+ - type: recall_at_1000
620
+ value: 94.248
621
+ - type: recall_at_3
622
+ value: 36.964999999999996
623
+ - type: recall_at_5
624
+ value: 43.338
625
+ - task:
626
+ type: Retrieval
627
+ dataset:
628
+ type: BeIR/cqadupstack
629
+ name: MTEB CQADupstackRetrieval
630
+ config: default
631
+ split: test
632
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
633
+ metrics:
634
+ - type: map_at_1
635
+ value: 25.825750000000003
636
+ - type: map_at_10
637
+ value: 35.614666666666665
638
+ - type: map_at_100
639
+ value: 36.952416666666664
640
+ - type: map_at_1000
641
+ value: 37.07433333333334
642
+ - type: map_at_3
643
+ value: 32.519916666666674
644
+ - type: map_at_5
645
+ value: 34.22966666666667
646
+ - type: ndcg_at_1
647
+ value: 30.616416666666662
648
+ - type: ndcg_at_10
649
+ value: 41.32475
650
+ - type: ndcg_at_100
651
+ value: 46.907
652
+ - type: ndcg_at_1000
653
+ value: 49.12475
654
+ - type: ndcg_at_3
655
+ value: 36.1415
656
+ - type: ndcg_at_5
657
+ value: 38.54916666666666
658
+ - type: precision_at_1
659
+ value: 30.616416666666662
660
+ - type: precision_at_10
661
+ value: 7.427166666666666
662
+ - type: precision_at_100
663
+ value: 1.2174166666666666
664
+ - type: precision_at_1000
665
+ value: 0.16066666666666665
666
+ - type: precision_at_3
667
+ value: 16.849083333333333
668
+ - type: precision_at_5
669
+ value: 12.1105
670
+ - type: recall_at_1
671
+ value: 25.825750000000003
672
+ - type: recall_at_10
673
+ value: 53.95283333333333
674
+ - type: recall_at_100
675
+ value: 78.408
676
+ - type: recall_at_1000
677
+ value: 93.60841666666666
678
+ - type: recall_at_3
679
+ value: 39.51116666666667
680
+ - type: recall_at_5
681
+ value: 45.67041666666667
682
+ - task:
683
+ type: Retrieval
684
+ dataset:
685
+ type: BeIR/cqadupstack
686
+ name: MTEB CQADupstackStatsRetrieval
687
+ config: default
688
+ split: test
689
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
690
+ metrics:
691
+ - type: map_at_1
692
+ value: 23.147000000000002
693
+ - type: map_at_10
694
+ value: 30.867
695
+ - type: map_at_100
696
+ value: 31.961000000000002
697
+ - type: map_at_1000
698
+ value: 32.074999999999996
699
+ - type: map_at_3
700
+ value: 28.598000000000003
701
+ - type: map_at_5
702
+ value: 29.715000000000003
703
+ - type: ndcg_at_1
704
+ value: 26.074
705
+ - type: ndcg_at_10
706
+ value: 35.379
707
+ - type: ndcg_at_100
708
+ value: 40.668
709
+ - type: ndcg_at_1000
710
+ value: 43.271
711
+ - type: ndcg_at_3
712
+ value: 31.291000000000004
713
+ - type: ndcg_at_5
714
+ value: 32.828
715
+ - type: precision_at_1
716
+ value: 26.074
717
+ - type: precision_at_10
718
+ value: 5.782
719
+ - type: precision_at_100
720
+ value: 0.9159999999999999
721
+ - type: precision_at_1000
722
+ value: 0.121
723
+ - type: precision_at_3
724
+ value: 13.905999999999999
725
+ - type: precision_at_5
726
+ value: 9.508999999999999
727
+ - type: recall_at_1
728
+ value: 23.147000000000002
729
+ - type: recall_at_10
730
+ value: 46.308
731
+ - type: recall_at_100
732
+ value: 70.529
733
+ - type: recall_at_1000
734
+ value: 89.53
735
+ - type: recall_at_3
736
+ value: 34.504000000000005
737
+ - type: recall_at_5
738
+ value: 38.472
739
+ - task:
740
+ type: Retrieval
741
+ dataset:
742
+ type: BeIR/cqadupstack
743
+ name: MTEB CQADupstackTexRetrieval
744
+ config: default
745
+ split: test
746
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
747
+ metrics:
748
+ - type: map_at_1
749
+ value: 17.573
750
+ - type: map_at_10
751
+ value: 25.480999999999998
752
+ - type: map_at_100
753
+ value: 26.740000000000002
754
+ - type: map_at_1000
755
+ value: 26.881
756
+ - type: map_at_3
757
+ value: 22.962
758
+ - type: map_at_5
759
+ value: 24.366
760
+ - type: ndcg_at_1
761
+ value: 21.783
762
+ - type: ndcg_at_10
763
+ value: 30.519000000000002
764
+ - type: ndcg_at_100
765
+ value: 36.449
766
+ - type: ndcg_at_1000
767
+ value: 39.476
768
+ - type: ndcg_at_3
769
+ value: 26.104
770
+ - type: ndcg_at_5
771
+ value: 28.142
772
+ - type: precision_at_1
773
+ value: 21.783
774
+ - type: precision_at_10
775
+ value: 5.716
776
+ - type: precision_at_100
777
+ value: 1.036
778
+ - type: precision_at_1000
779
+ value: 0.149
780
+ - type: precision_at_3
781
+ value: 12.629000000000001
782
+ - type: precision_at_5
783
+ value: 9.188
784
+ - type: recall_at_1
785
+ value: 17.573
786
+ - type: recall_at_10
787
+ value: 41.565999999999995
788
+ - type: recall_at_100
789
+ value: 68.31099999999999
790
+ - type: recall_at_1000
791
+ value: 89.66
792
+ - type: recall_at_3
793
+ value: 28.998
794
+ - type: recall_at_5
795
+ value: 34.409
796
+ - task:
797
+ type: Retrieval
798
+ dataset:
799
+ type: BeIR/cqadupstack
800
+ name: MTEB CQADupstackUnixRetrieval
801
+ config: default
802
+ split: test
803
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
804
+ metrics:
805
+ - type: map_at_1
806
+ value: 25.393
807
+ - type: map_at_10
808
+ value: 35.408
809
+ - type: map_at_100
810
+ value: 36.765
811
+ - type: map_at_1000
812
+ value: 36.870000000000005
813
+ - type: map_at_3
814
+ value: 31.858999999999998
815
+ - type: map_at_5
816
+ value: 34.088
817
+ - type: ndcg_at_1
818
+ value: 30.409999999999997
819
+ - type: ndcg_at_10
820
+ value: 41.31
821
+ - type: ndcg_at_100
822
+ value: 47.317
823
+ - type: ndcg_at_1000
824
+ value: 49.451
825
+ - type: ndcg_at_3
826
+ value: 35.156
827
+ - type: ndcg_at_5
828
+ value: 38.550000000000004
829
+ - type: precision_at_1
830
+ value: 30.409999999999997
831
+ - type: precision_at_10
832
+ value: 7.285
833
+ - type: precision_at_100
834
+ value: 1.16
835
+ - type: precision_at_1000
836
+ value: 0.145
837
+ - type: precision_at_3
838
+ value: 16.2
839
+ - type: precision_at_5
840
+ value: 12.015
841
+ - type: recall_at_1
842
+ value: 25.393
843
+ - type: recall_at_10
844
+ value: 54.955
845
+ - type: recall_at_100
846
+ value: 81.074
847
+ - type: recall_at_1000
848
+ value: 95.517
849
+ - type: recall_at_3
850
+ value: 38.646
851
+ - type: recall_at_5
852
+ value: 47.155
853
+ - task:
854
+ type: Retrieval
855
+ dataset:
856
+ type: BeIR/cqadupstack
857
+ name: MTEB CQADupstackWebmastersRetrieval
858
+ config: default
859
+ split: test
860
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
861
+ metrics:
862
+ - type: map_at_1
863
+ value: 25.219
864
+ - type: map_at_10
865
+ value: 34.317
866
+ - type: map_at_100
867
+ value: 36.099
868
+ - type: map_at_1000
869
+ value: 36.339
870
+ - type: map_at_3
871
+ value: 31.118000000000002
872
+ - type: map_at_5
873
+ value: 32.759
874
+ - type: ndcg_at_1
875
+ value: 30.04
876
+ - type: ndcg_at_10
877
+ value: 40.467
878
+ - type: ndcg_at_100
879
+ value: 46.918
880
+ - type: ndcg_at_1000
881
+ value: 49.263
882
+ - type: ndcg_at_3
883
+ value: 34.976
884
+ - type: ndcg_at_5
885
+ value: 37.345
886
+ - type: precision_at_1
887
+ value: 30.04
888
+ - type: precision_at_10
889
+ value: 7.786999999999999
890
+ - type: precision_at_100
891
+ value: 1.638
892
+ - type: precision_at_1000
893
+ value: 0.249
894
+ - type: precision_at_3
895
+ value: 16.206
896
+ - type: precision_at_5
897
+ value: 11.976
898
+ - type: recall_at_1
899
+ value: 25.219
900
+ - type: recall_at_10
901
+ value: 52.443
902
+ - type: recall_at_100
903
+ value: 80.523
904
+ - type: recall_at_1000
905
+ value: 95.025
906
+ - type: recall_at_3
907
+ value: 37.216
908
+ - type: recall_at_5
909
+ value: 43.086999999999996
910
+ - task:
911
+ type: Retrieval
912
+ dataset:
913
+ type: BeIR/cqadupstack
914
+ name: MTEB CQADupstackWordpressRetrieval
915
+ config: default
916
+ split: test
917
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
918
+ metrics:
919
+ - type: map_at_1
920
+ value: 20.801
921
+ - type: map_at_10
922
+ value: 28.371000000000002
923
+ - type: map_at_100
924
+ value: 29.483999999999998
925
+ - type: map_at_1000
926
+ value: 29.602
927
+ - type: map_at_3
928
+ value: 25.790999999999997
929
+ - type: map_at_5
930
+ value: 27.025
931
+ - type: ndcg_at_1
932
+ value: 22.736
933
+ - type: ndcg_at_10
934
+ value: 33.147999999999996
935
+ - type: ndcg_at_100
936
+ value: 38.711
937
+ - type: ndcg_at_1000
938
+ value: 41.498000000000005
939
+ - type: ndcg_at_3
940
+ value: 28.016000000000002
941
+ - type: ndcg_at_5
942
+ value: 30.011
943
+ - type: precision_at_1
944
+ value: 22.736
945
+ - type: precision_at_10
946
+ value: 5.379
947
+ - type: precision_at_100
948
+ value: 0.876
949
+ - type: precision_at_1000
950
+ value: 0.125
951
+ - type: precision_at_3
952
+ value: 11.953
953
+ - type: precision_at_5
954
+ value: 8.466
955
+ - type: recall_at_1
956
+ value: 20.801
957
+ - type: recall_at_10
958
+ value: 46.134
959
+ - type: recall_at_100
960
+ value: 72.151
961
+ - type: recall_at_1000
962
+ value: 92.648
963
+ - type: recall_at_3
964
+ value: 32.061
965
+ - type: recall_at_5
966
+ value: 36.781000000000006
967
+ - task:
968
+ type: Retrieval
969
+ dataset:
970
+ type: climate-fever
971
+ name: MTEB ClimateFEVER
972
+ config: default
973
+ split: test
974
+ revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce
975
+ metrics:
976
+ - type: map_at_1
977
+ value: 7.9159999999999995
978
+ - type: map_at_10
979
+ value: 13.769
980
+ - type: map_at_100
981
+ value: 15.447
982
+ - type: map_at_1000
983
+ value: 15.634
984
+ - type: map_at_3
985
+ value: 11.234
986
+ - type: map_at_5
987
+ value: 12.581999999999999
988
+ - type: ndcg_at_1
989
+ value: 17.72
990
+ - type: ndcg_at_10
991
+ value: 20.272000000000002
992
+ - type: ndcg_at_100
993
+ value: 27.748
994
+ - type: ndcg_at_1000
995
+ value: 31.457
996
+ - type: ndcg_at_3
997
+ value: 15.742
998
+ - type: ndcg_at_5
999
+ value: 17.494
1000
+ - type: precision_at_1
1001
+ value: 17.72
1002
+ - type: precision_at_10
1003
+ value: 6.554
1004
+ - type: precision_at_100
1005
+ value: 1.438
1006
+ - type: precision_at_1000
1007
+ value: 0.212
1008
+ - type: precision_at_3
1009
+ value: 11.705
1010
+ - type: precision_at_5
1011
+ value: 9.511
1012
+ - type: recall_at_1
1013
+ value: 7.9159999999999995
1014
+ - type: recall_at_10
1015
+ value: 25.389
1016
+ - type: recall_at_100
1017
+ value: 52.042
1018
+ - type: recall_at_1000
1019
+ value: 73.166
1020
+ - type: recall_at_3
1021
+ value: 14.585999999999999
1022
+ - type: recall_at_5
1023
+ value: 19.145
1024
+ - task:
1025
+ type: Retrieval
1026
+ dataset:
1027
+ type: dbpedia-entity
1028
+ name: MTEB DBPedia
1029
+ config: default
1030
+ split: test
1031
+ revision: f097057d03ed98220bc7309ddb10b71a54d667d6
1032
+ metrics:
1033
+ - type: map_at_1
1034
+ value: 7.172000000000001
1035
+ - type: map_at_10
1036
+ value: 14.507
1037
+ - type: map_at_100
1038
+ value: 20.094
1039
+ - type: map_at_1000
1040
+ value: 21.357
1041
+ - type: map_at_3
1042
+ value: 10.45
1043
+ - type: map_at_5
1044
+ value: 12.135
1045
+ - type: ndcg_at_1
1046
+ value: 42.375
1047
+ - type: ndcg_at_10
1048
+ value: 32.33
1049
+ - type: ndcg_at_100
1050
+ value: 36.370000000000005
1051
+ - type: ndcg_at_1000
1052
+ value: 43.596000000000004
1053
+ - type: ndcg_at_3
1054
+ value: 35.006
1055
+ - type: ndcg_at_5
1056
+ value: 33.35
1057
+ - type: precision_at_1
1058
+ value: 54.50000000000001
1059
+ - type: precision_at_10
1060
+ value: 26.424999999999997
1061
+ - type: precision_at_100
1062
+ value: 8.24
1063
+ - type: precision_at_1000
1064
+ value: 1.765
1065
+ - type: precision_at_3
1066
+ value: 38.667
1067
+ - type: precision_at_5
1068
+ value: 33.0
1069
+ - type: recall_at_1
1070
+ value: 7.172000000000001
1071
+ - type: recall_at_10
1072
+ value: 19.922
1073
+ - type: recall_at_100
1074
+ value: 43.273
1075
+ - type: recall_at_1000
1076
+ value: 67.157
1077
+ - type: recall_at_3
1078
+ value: 11.521
1079
+ - type: recall_at_5
1080
+ value: 14.667
1081
+ - task:
1082
+ type: Classification
1083
+ dataset:
1084
+ type: mteb/emotion
1085
+ name: MTEB EmotionClassification
1086
+ config: default
1087
+ split: test
1088
+ revision: 829147f8f75a25f005913200eb5ed41fae320aa1
1089
+ metrics:
1090
+ - type: accuracy
1091
+ value: 38.43
1092
+ - type: f1
1093
+ value: 35.26220518237799
1094
+ - task:
1095
+ type: Retrieval
1096
+ dataset:
1097
+ type: fever
1098
+ name: MTEB FEVER
1099
+ config: default
1100
+ split: test
1101
+ revision: 1429cf27e393599b8b359b9b72c666f96b2525f9
1102
+ metrics:
1103
+ - type: map_at_1
1104
+ value: 34.076
1105
+ - type: map_at_10
1106
+ value: 45.482
1107
+ - type: map_at_100
1108
+ value: 46.269
1109
+ - type: map_at_1000
1110
+ value: 46.309
1111
+ - type: map_at_3
1112
+ value: 42.614000000000004
1113
+ - type: map_at_5
1114
+ value: 44.314
1115
+ - type: ndcg_at_1
1116
+ value: 36.529
1117
+ - type: ndcg_at_10
1118
+ value: 51.934000000000005
1119
+ - type: ndcg_at_100
1120
+ value: 55.525000000000006
1121
+ - type: ndcg_at_1000
1122
+ value: 56.568
1123
+ - type: ndcg_at_3
1124
+ value: 46.169
1125
+ - type: ndcg_at_5
1126
+ value: 49.163000000000004
1127
+ - type: precision_at_1
1128
+ value: 36.529
1129
+ - type: precision_at_10
1130
+ value: 7.5649999999999995
1131
+ - type: precision_at_100
1132
+ value: 0.947
1133
+ - type: precision_at_1000
1134
+ value: 0.105
1135
+ - type: precision_at_3
1136
+ value: 19.326999999999998
1137
+ - type: precision_at_5
1138
+ value: 13.239999999999998
1139
+ - type: recall_at_1
1140
+ value: 34.076
1141
+ - type: recall_at_10
1142
+ value: 69.009
1143
+ - type: recall_at_100
1144
+ value: 85.047
1145
+ - type: recall_at_1000
1146
+ value: 92.962
1147
+ - type: recall_at_3
1148
+ value: 53.446000000000005
1149
+ - type: recall_at_5
1150
+ value: 60.622
1151
+ - task:
1152
+ type: Retrieval
1153
+ dataset:
1154
+ type: fiqa
1155
+ name: MTEB FiQA2018
1156
+ config: default
1157
+ split: test
1158
+ revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be
1159
+ metrics:
1160
+ - type: map_at_1
1161
+ value: 17.14
1162
+ - type: map_at_10
1163
+ value: 29.141000000000002
1164
+ - type: map_at_100
1165
+ value: 30.956
1166
+ - type: map_at_1000
1167
+ value: 31.159
1168
+ - type: map_at_3
1169
+ value: 25.188
1170
+ - type: map_at_5
1171
+ value: 27.506999999999998
1172
+ - type: ndcg_at_1
1173
+ value: 34.721999999999994
1174
+ - type: ndcg_at_10
1175
+ value: 36.867
1176
+ - type: ndcg_at_100
1177
+ value: 43.931
1178
+ - type: ndcg_at_1000
1179
+ value: 47.276
1180
+ - type: ndcg_at_3
1181
+ value: 33.18
1182
+ - type: ndcg_at_5
1183
+ value: 34.504000000000005
1184
+ - type: precision_at_1
1185
+ value: 34.721999999999994
1186
+ - type: precision_at_10
1187
+ value: 10.448
1188
+ - type: precision_at_100
1189
+ value: 1.778
1190
+ - type: precision_at_1000
1191
+ value: 0.23600000000000002
1192
+ - type: precision_at_3
1193
+ value: 22.377
1194
+ - type: precision_at_5
1195
+ value: 16.759
1196
+ - type: recall_at_1
1197
+ value: 17.14
1198
+ - type: recall_at_10
1199
+ value: 44.131
1200
+ - type: recall_at_100
1201
+ value: 70.60600000000001
1202
+ - type: recall_at_1000
1203
+ value: 90.672
1204
+ - type: recall_at_3
1205
+ value: 30.536
1206
+ - type: recall_at_5
1207
+ value: 36.706
1208
+ - task:
1209
+ type: Retrieval
1210
+ dataset:
1211
+ type: hotpotqa
1212
+ name: MTEB HotpotQA
1213
+ config: default
1214
+ split: test
1215
+ revision: 766870b35a1b9ca65e67a0d1913899973551fc6c
1216
+ metrics:
1217
+ - type: map_at_1
1218
+ value: 27.717999999999996
1219
+ - type: map_at_10
1220
+ value: 37.63
1221
+ - type: map_at_100
1222
+ value: 38.534
1223
+ - type: map_at_1000
1224
+ value: 38.619
1225
+ - type: map_at_3
1226
+ value: 35.197
1227
+ - type: map_at_5
1228
+ value: 36.592999999999996
1229
+ - type: ndcg_at_1
1230
+ value: 55.43599999999999
1231
+ - type: ndcg_at_10
1232
+ value: 46.513
1233
+ - type: ndcg_at_100
1234
+ value: 50.21
1235
+ - type: ndcg_at_1000
1236
+ value: 52.049
1237
+ - type: ndcg_at_3
1238
+ value: 42.333999999999996
1239
+ - type: ndcg_at_5
1240
+ value: 44.45
1241
+ - type: precision_at_1
1242
+ value: 55.43599999999999
1243
+ - type: precision_at_10
1244
+ value: 9.741
1245
+ - type: precision_at_100
1246
+ value: 1.2670000000000001
1247
+ - type: precision_at_1000
1248
+ value: 0.151
1249
+ - type: precision_at_3
1250
+ value: 26.194
1251
+ - type: precision_at_5
1252
+ value: 17.396
1253
+ - type: recall_at_1
1254
+ value: 27.717999999999996
1255
+ - type: recall_at_10
1256
+ value: 48.704
1257
+ - type: recall_at_100
1258
+ value: 63.363
1259
+ - type: recall_at_1000
1260
+ value: 75.564
1261
+ - type: recall_at_3
1262
+ value: 39.291
1263
+ - type: recall_at_5
1264
+ value: 43.491
1265
+ - task:
1266
+ type: Classification
1267
+ dataset:
1268
+ type: mteb/imdb
1269
+ name: MTEB ImdbClassification
1270
+ config: default
1271
+ split: test
1272
+ revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4
1273
+ metrics:
1274
+ - type: accuracy
1275
+ value: 60.6612
1276
+ - type: ap
1277
+ value: 56.73559487964456
1278
+ - type: f1
1279
+ value: 60.39970244353384
1280
+ - task:
1281
+ type: Retrieval
1282
+ dataset:
1283
+ type: msmarco
1284
+ name: MTEB MSMARCO
1285
+ config: default
1286
+ split: dev
1287
+ revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849
1288
+ metrics:
1289
+ - type: map_at_1
1290
+ value: 18.715
1291
+ - type: map_at_10
1292
+ value: 30.014999999999997
1293
+ - type: map_at_100
1294
+ value: 31.208999999999996
1295
+ - type: map_at_1000
1296
+ value: 31.269999999999996
1297
+ - type: map_at_3
1298
+ value: 26.299
1299
+ - type: map_at_5
1300
+ value: 28.408
1301
+ - type: ndcg_at_1
1302
+ value: 19.255
1303
+ - type: ndcg_at_10
1304
+ value: 36.542
1305
+ - type: ndcg_at_100
1306
+ value: 42.471
1307
+ - type: ndcg_at_1000
1308
+ value: 44.022
1309
+ - type: ndcg_at_3
1310
+ value: 28.921000000000003
1311
+ - type: ndcg_at_5
1312
+ value: 32.676
1313
+ - type: precision_at_1
1314
+ value: 19.255
1315
+ - type: precision_at_10
1316
+ value: 5.91
1317
+ - type: precision_at_100
1318
+ value: 0.8920000000000001
1319
+ - type: precision_at_1000
1320
+ value: 0.10200000000000001
1321
+ - type: precision_at_3
1322
+ value: 12.388
1323
+ - type: precision_at_5
1324
+ value: 9.33
1325
+ - type: recall_at_1
1326
+ value: 18.715
1327
+ - type: recall_at_10
1328
+ value: 56.76
1329
+ - type: recall_at_100
1330
+ value: 84.481
1331
+ - type: recall_at_1000
1332
+ value: 96.44
1333
+ - type: recall_at_3
1334
+ value: 35.942
1335
+ - type: recall_at_5
1336
+ value: 44.926
1337
+ - task:
1338
+ type: Classification
1339
+ dataset:
1340
+ type: mteb/mtop_domain
1341
+ name: MTEB MTOPDomainClassification (en)
1342
+ config: en
1343
+ split: test
1344
+ revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
1345
+ metrics:
1346
+ - type: accuracy
1347
+ value: 91.56178750569997
1348
+ - type: f1
1349
+ value: 91.02309252160694
1350
+ - task:
1351
+ type: Classification
1352
+ dataset:
1353
+ type: mteb/mtop_intent
1354
+ name: MTEB MTOPIntentClassification (en)
1355
+ config: en
1356
+ split: test
1357
+ revision: 6299947a7777084cc2d4b64235bf7190381ce755
1358
+ metrics:
1359
+ - type: accuracy
1360
+ value: 62.18194254445966
1361
+ - type: f1
1362
+ value: 43.090624769020444
1363
+ - task:
1364
+ type: Classification
1365
+ dataset:
1366
+ type: mteb/amazon_massive_intent
1367
+ name: MTEB MassiveIntentClassification (en)
1368
+ config: en
1369
+ split: test
1370
+ revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
1371
+ metrics:
1372
+ - type: accuracy
1373
+ value: 67.404169468729
1374
+ - type: f1
1375
+ value: 64.82901615433794
1376
+ - task:
1377
+ type: Classification
1378
+ dataset:
1379
+ type: mteb/amazon_massive_scenario
1380
+ name: MTEB MassiveScenarioClassification (en)
1381
+ config: en
1382
+ split: test
1383
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1384
+ metrics:
1385
+ - type: accuracy
1386
+ value: 75.75655682582381
1387
+ - type: f1
1388
+ value: 74.93126114560368
1389
+ - task:
1390
+ type: Clustering
1391
+ dataset:
1392
+ type: mteb/medrxiv-clustering-p2p
1393
+ name: MTEB MedrxivClusteringP2P
1394
+ config: default
1395
+ split: test
1396
+ revision: dcefc037ef84348e49b0d29109e891c01067226b
1397
+ metrics:
1398
+ - type: v_measure
1399
+ value: 34.40873490143895
1400
+ - task:
1401
+ type: Clustering
1402
+ dataset:
1403
+ type: mteb/medrxiv-clustering-s2s
1404
+ name: MTEB MedrxivClusteringS2S
1405
+ config: default
1406
+ split: test
1407
+ revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc
1408
+ metrics:
1409
+ - type: v_measure
1410
+ value: 32.292207500530914
1411
+ - task:
1412
+ type: Reranking
1413
+ dataset:
1414
+ type: mteb/mind_small
1415
+ name: MTEB MindSmallReranking
1416
+ config: default
1417
+ split: test
1418
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1419
+ metrics:
1420
+ - type: map
1421
+ value: 30.798042020200267
1422
+ - type: mrr
1423
+ value: 31.803264263405513
1424
+ - task:
1425
+ type: Retrieval
1426
+ dataset:
1427
+ type: nfcorpus
1428
+ name: MTEB NFCorpus
1429
+ config: default
1430
+ split: test
1431
+ revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610
1432
+ metrics:
1433
+ - type: map_at_1
1434
+ value: 4.3229999999999995
1435
+ - type: map_at_10
1436
+ value: 11.048
1437
+ - type: map_at_100
1438
+ value: 14.244000000000002
1439
+ - type: map_at_1000
1440
+ value: 15.684000000000001
1441
+ - type: map_at_3
1442
+ value: 7.7219999999999995
1443
+ - type: map_at_5
1444
+ value: 9.231
1445
+ - type: ndcg_at_1
1446
+ value: 39.474
1447
+ - type: ndcg_at_10
1448
+ value: 31.594
1449
+ - type: ndcg_at_100
1450
+ value: 29.455
1451
+ - type: ndcg_at_1000
1452
+ value: 38.283
1453
+ - type: ndcg_at_3
1454
+ value: 36.355
1455
+ - type: ndcg_at_5
1456
+ value: 34.164
1457
+ - type: precision_at_1
1458
+ value: 41.486000000000004
1459
+ - type: precision_at_10
1460
+ value: 24.334
1461
+ - type: precision_at_100
1462
+ value: 7.981000000000001
1463
+ - type: precision_at_1000
1464
+ value: 2.096
1465
+ - type: precision_at_3
1466
+ value: 34.881
1467
+ - type: precision_at_5
1468
+ value: 30.279
1469
+ - type: recall_at_1
1470
+ value: 4.3229999999999995
1471
+ - type: recall_at_10
1472
+ value: 15.498999999999999
1473
+ - type: recall_at_100
1474
+ value: 31.151
1475
+ - type: recall_at_1000
1476
+ value: 63.211
1477
+ - type: recall_at_3
1478
+ value: 9.053
1479
+ - type: recall_at_5
1480
+ value: 11.959
1481
+ - task:
1482
+ type: Retrieval
1483
+ dataset:
1484
+ type: nq
1485
+ name: MTEB NQ
1486
+ config: default
1487
+ split: test
1488
+ revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c
1489
+ metrics:
1490
+ - type: map_at_1
1491
+ value: 22.644000000000002
1492
+ - type: map_at_10
1493
+ value: 36.335
1494
+ - type: map_at_100
1495
+ value: 37.687
1496
+ - type: map_at_1000
1497
+ value: 37.733
1498
+ - type: map_at_3
1499
+ value: 31.928
1500
+ - type: map_at_5
1501
+ value: 34.586
1502
+ - type: ndcg_at_1
1503
+ value: 25.607999999999997
1504
+ - type: ndcg_at_10
1505
+ value: 43.869
1506
+ - type: ndcg_at_100
1507
+ value: 49.730000000000004
1508
+ - type: ndcg_at_1000
1509
+ value: 50.749
1510
+ - type: ndcg_at_3
1511
+ value: 35.418
1512
+ - type: ndcg_at_5
1513
+ value: 39.961999999999996
1514
+ - type: precision_at_1
1515
+ value: 25.607999999999997
1516
+ - type: precision_at_10
1517
+ value: 7.697
1518
+ - type: precision_at_100
1519
+ value: 1.093
1520
+ - type: precision_at_1000
1521
+ value: 0.11900000000000001
1522
+ - type: precision_at_3
1523
+ value: 16.522000000000002
1524
+ - type: precision_at_5
1525
+ value: 12.486
1526
+ - type: recall_at_1
1527
+ value: 22.644000000000002
1528
+ - type: recall_at_10
1529
+ value: 64.711
1530
+ - type: recall_at_100
1531
+ value: 90.32900000000001
1532
+ - type: recall_at_1000
1533
+ value: 97.82
1534
+ - type: recall_at_3
1535
+ value: 42.754999999999995
1536
+ - type: recall_at_5
1537
+ value: 53.37
1538
+ - task:
1539
+ type: Retrieval
1540
+ dataset:
1541
+ type: quora
1542
+ name: MTEB QuoraRetrieval
1543
+ config: default
1544
+ split: test
1545
+ revision: 6205996560df11e3a3da9ab4f926788fc30a7db4
1546
+ metrics:
1547
+ - type: map_at_1
1548
+ value: 69.76
1549
+ - type: map_at_10
1550
+ value: 83.64200000000001
1551
+ - type: map_at_100
1552
+ value: 84.312
1553
+ - type: map_at_1000
1554
+ value: 84.329
1555
+ - type: map_at_3
1556
+ value: 80.537
1557
+ - type: map_at_5
1558
+ value: 82.494
1559
+ - type: ndcg_at_1
1560
+ value: 80.41
1561
+ - type: ndcg_at_10
1562
+ value: 87.556
1563
+ - type: ndcg_at_100
1564
+ value: 88.847
1565
+ - type: ndcg_at_1000
1566
+ value: 88.959
1567
+ - type: ndcg_at_3
1568
+ value: 84.466
1569
+ - type: ndcg_at_5
1570
+ value: 86.193
1571
+ - type: precision_at_1
1572
+ value: 80.41
1573
+ - type: precision_at_10
1574
+ value: 13.374
1575
+ - type: precision_at_100
1576
+ value: 1.529
1577
+ - type: precision_at_1000
1578
+ value: 0.157
1579
+ - type: precision_at_3
1580
+ value: 36.953
1581
+ - type: precision_at_5
1582
+ value: 24.401999999999997
1583
+ - type: recall_at_1
1584
+ value: 69.76
1585
+ - type: recall_at_10
1586
+ value: 95.029
1587
+ - type: recall_at_100
1588
+ value: 99.44
1589
+ - type: recall_at_1000
1590
+ value: 99.979
1591
+ - type: recall_at_3
1592
+ value: 86.215
1593
+ - type: recall_at_5
1594
+ value: 91.03999999999999
1595
+ - task:
1596
+ type: Clustering
1597
+ dataset:
1598
+ type: mteb/reddit-clustering
1599
+ name: MTEB RedditClustering
1600
+ config: default
1601
+ split: test
1602
+ revision: b2805658ae38990172679479369a78b86de8c390
1603
+ metrics:
1604
+ - type: v_measure
1605
+ value: 50.66969274980475
1606
+ - task:
1607
+ type: Clustering
1608
+ dataset:
1609
+ type: mteb/reddit-clustering-p2p
1610
+ name: MTEB RedditClusteringP2P
1611
+ config: default
1612
+ split: test
1613
+ revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
1614
+ metrics:
1615
+ - type: v_measure
1616
+ value: 54.15176409632201
1617
+ - task:
1618
+ type: Retrieval
1619
+ dataset:
1620
+ type: scidocs
1621
+ name: MTEB SCIDOCS
1622
+ config: default
1623
+ split: test
1624
+ revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5
1625
+ metrics:
1626
+ - type: map_at_1
1627
+ value: 4.853
1628
+ - type: map_at_10
1629
+ value: 12.937999999999999
1630
+ - type: map_at_100
1631
+ value: 15.588
1632
+ - type: map_at_1000
1633
+ value: 15.939
1634
+ - type: map_at_3
1635
+ value: 9.135
1636
+ - type: map_at_5
1637
+ value: 11.004
1638
+ - type: ndcg_at_1
1639
+ value: 24.0
1640
+ - type: ndcg_at_10
1641
+ value: 21.641
1642
+ - type: ndcg_at_100
1643
+ value: 31.212
1644
+ - type: ndcg_at_1000
1645
+ value: 36.854
1646
+ - type: ndcg_at_3
1647
+ value: 20.284
1648
+ - type: ndcg_at_5
1649
+ value: 17.737
1650
+ - type: precision_at_1
1651
+ value: 24.0
1652
+ - type: precision_at_10
1653
+ value: 11.4
1654
+ - type: precision_at_100
1655
+ value: 2.516
1656
+ - type: precision_at_1000
1657
+ value: 0.387
1658
+ - type: precision_at_3
1659
+ value: 19.167
1660
+ - type: precision_at_5
1661
+ value: 15.72
1662
+ - type: recall_at_1
1663
+ value: 4.853
1664
+ - type: recall_at_10
1665
+ value: 23.087
1666
+ - type: recall_at_100
1667
+ value: 51.012
1668
+ - type: recall_at_1000
1669
+ value: 78.49000000000001
1670
+ - type: recall_at_3
1671
+ value: 11.658
1672
+ - type: recall_at_5
1673
+ value: 15.923000000000002
1674
+ - task:
1675
+ type: STS
1676
+ dataset:
1677
+ type: mteb/sickr-sts
1678
+ name: MTEB SICK-R
1679
+ config: default
1680
+ split: test
1681
+ revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
1682
+ metrics:
1683
+ - type: cos_sim_pearson
1684
+ value: 83.91595834747078
1685
+ - type: cos_sim_spearman
1686
+ value: 77.58245130495686
1687
+ - type: euclidean_pearson
1688
+ value: 80.77605511224702
1689
+ - type: euclidean_spearman
1690
+ value: 77.58244681255565
1691
+ - type: manhattan_pearson
1692
+ value: 80.70675261518134
1693
+ - type: manhattan_spearman
1694
+ value: 77.48238642250558
1695
+ - task:
1696
+ type: STS
1697
+ dataset:
1698
+ type: mteb/sts12-sts
1699
+ name: MTEB STS12
1700
+ config: default
1701
+ split: test
1702
+ revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f
1703
+ metrics:
1704
+ - type: cos_sim_pearson
1705
+ value: 81.35998585185463
1706
+ - type: cos_sim_spearman
1707
+ value: 72.36900735029991
1708
+ - type: euclidean_pearson
1709
+ value: 77.44425972881783
1710
+ - type: euclidean_spearman
1711
+ value: 72.36900735029991
1712
+ - type: manhattan_pearson
1713
+ value: 77.48268272405316
1714
+ - type: manhattan_spearman
1715
+ value: 72.36650357806357
1716
+ - task:
1717
+ type: STS
1718
+ dataset:
1719
+ type: mteb/sts13-sts
1720
+ name: MTEB STS13
1721
+ config: default
1722
+ split: test
1723
+ revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9
1724
+ metrics:
1725
+ - type: cos_sim_pearson
1726
+ value: 80.15192226911441
1727
+ - type: cos_sim_spearman
1728
+ value: 80.60316722220763
1729
+ - type: euclidean_pearson
1730
+ value: 79.9515074804673
1731
+ - type: euclidean_spearman
1732
+ value: 80.60316715056034
1733
+ - type: manhattan_pearson
1734
+ value: 80.01037050043855
1735
+ - type: manhattan_spearman
1736
+ value: 80.70244228209006
1737
+ - task:
1738
+ type: STS
1739
+ dataset:
1740
+ type: mteb/sts14-sts
1741
+ name: MTEB STS14
1742
+ config: default
1743
+ split: test
1744
+ revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b
1745
+ metrics:
1746
+ - type: cos_sim_pearson
1747
+ value: 80.80137749134273
1748
+ - type: cos_sim_spearman
1749
+ value: 75.58912800301661
1750
+ - type: euclidean_pearson
1751
+ value: 78.89739732785547
1752
+ - type: euclidean_spearman
1753
+ value: 75.58912800301661
1754
+ - type: manhattan_pearson
1755
+ value: 78.88130916509184
1756
+ - type: manhattan_spearman
1757
+ value: 75.56512617108156
1758
+ - task:
1759
+ type: STS
1760
+ dataset:
1761
+ type: mteb/sts15-sts
1762
+ name: MTEB STS15
1763
+ config: default
1764
+ split: test
1765
+ revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6
1766
+ metrics:
1767
+ - type: cos_sim_pearson
1768
+ value: 84.73605558012511
1769
+ - type: cos_sim_spearman
1770
+ value: 85.38966051883823
1771
+ - type: euclidean_pearson
1772
+ value: 84.65792305262497
1773
+ - type: euclidean_spearman
1774
+ value: 85.38965068015148
1775
+ - type: manhattan_pearson
1776
+ value: 84.6284531553976
1777
+ - type: manhattan_spearman
1778
+ value: 85.36525580485275
1779
+ - task:
1780
+ type: STS
1781
+ dataset:
1782
+ type: mteb/sts16-sts
1783
+ name: MTEB STS16
1784
+ config: default
1785
+ split: test
1786
+ revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd
1787
+ metrics:
1788
+ - type: cos_sim_pearson
1789
+ value: 77.93667023468089
1790
+ - type: cos_sim_spearman
1791
+ value: 78.98945343973261
1792
+ - type: euclidean_pearson
1793
+ value: 78.55627105899589
1794
+ - type: euclidean_spearman
1795
+ value: 78.98945343973261
1796
+ - type: manhattan_pearson
1797
+ value: 78.47171138630095
1798
+ - type: manhattan_spearman
1799
+ value: 78.90029153062082
1800
+ - task:
1801
+ type: STS
1802
+ dataset:
1803
+ type: mteb/sts17-crosslingual-sts
1804
+ name: MTEB STS17 (ko-ko)
1805
+ config: ko-ko
1806
+ split: test
1807
+ revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
1808
+ metrics:
1809
+ - type: cos_sim_pearson
1810
+ value: 38.02556869388448
1811
+ - type: cos_sim_spearman
1812
+ value: 43.39452386216687
1813
+ - type: euclidean_pearson
1814
+ value: 42.85346056221848
1815
+ - type: euclidean_spearman
1816
+ value: 43.39454482701475
1817
+ - type: manhattan_pearson
1818
+ value: 42.80255086270408
1819
+ - type: manhattan_spearman
1820
+ value: 43.35745739810561
1821
+ - task:
1822
+ type: STS
1823
+ dataset:
1824
+ type: mteb/sts17-crosslingual-sts
1825
+ name: MTEB STS17 (ar-ar)
1826
+ config: ar-ar
1827
+ split: test
1828
+ revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
1829
+ metrics:
1830
+ - type: cos_sim_pearson
1831
+ value: 50.19733275252325
1832
+ - type: cos_sim_spearman
1833
+ value: 50.892912699226166
1834
+ - type: euclidean_pearson
1835
+ value: 53.38352259940662
1836
+ - type: euclidean_spearman
1837
+ value: 50.892912699226166
1838
+ - type: manhattan_pearson
1839
+ value: 53.48429031763742
1840
+ - type: manhattan_spearman
1841
+ value: 50.961509277559394
1842
+ - task:
1843
+ type: STS
1844
+ dataset:
1845
+ type: mteb/sts17-crosslingual-sts
1846
+ name: MTEB STS17 (en-ar)
1847
+ config: en-ar
1848
+ split: test
1849
+ revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
1850
+ metrics:
1851
+ - type: cos_sim_pearson
1852
+ value: -5.346248828225636
1853
+ - type: cos_sim_spearman
1854
+ value: -4.276245759627542
1855
+ - type: euclidean_pearson
1856
+ value: -5.34997238478067
1857
+ - type: euclidean_spearman
1858
+ value: -4.276245759627542
1859
+ - type: manhattan_pearson
1860
+ value: -1.599674226848396
1861
+ - type: manhattan_spearman
1862
+ value: -0.6972996366546237
1863
+ - task:
1864
+ type: STS
1865
+ dataset:
1866
+ type: mteb/sts17-crosslingual-sts
1867
+ name: MTEB STS17 (en-de)
1868
+ config: en-de
1869
+ split: test
1870
+ revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
1871
+ metrics:
1872
+ - type: cos_sim_pearson
1873
+ value: 37.0025013483991
1874
+ - type: cos_sim_spearman
1875
+ value: 35.81883942216964
1876
+ - type: euclidean_pearson
1877
+ value: 36.69612954510884
1878
+ - type: euclidean_spearman
1879
+ value: 35.81883942216964
1880
+ - type: manhattan_pearson
1881
+ value: 35.141229073611555
1882
+ - type: manhattan_spearman
1883
+ value: 32.04594883372404
1884
+ - task:
1885
+ type: STS
1886
+ dataset:
1887
+ type: mteb/sts17-crosslingual-sts
1888
+ name: MTEB STS17 (en-en)
1889
+ config: en-en
1890
+ split: test
1891
+ revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
1892
+ metrics:
1893
+ - type: cos_sim_pearson
1894
+ value: 88.02366672243191
1895
+ - type: cos_sim_spearman
1896
+ value: 87.58779089494524
1897
+ - type: euclidean_pearson
1898
+ value: 87.99011173645361
1899
+ - type: euclidean_spearman
1900
+ value: 87.58779089494524
1901
+ - type: manhattan_pearson
1902
+ value: 87.71266341564564
1903
+ - type: manhattan_spearman
1904
+ value: 87.24437101621581
1905
+ - task:
1906
+ type: STS
1907
+ dataset:
1908
+ type: mteb/sts17-crosslingual-sts
1909
+ name: MTEB STS17 (en-tr)
1910
+ config: en-tr
1911
+ split: test
1912
+ revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
1913
+ metrics:
1914
+ - type: cos_sim_pearson
1915
+ value: 6.928208810824121
1916
+ - type: cos_sim_spearman
1917
+ value: 4.496540073637865
1918
+ - type: euclidean_pearson
1919
+ value: 7.258004484570359
1920
+ - type: euclidean_spearman
1921
+ value: 4.496540073637865
1922
+ - type: manhattan_pearson
1923
+ value: 4.294687250993676
1924
+ - type: manhattan_spearman
1925
+ value: 2.517822531443102
1926
+ - task:
1927
+ type: STS
1928
+ dataset:
1929
+ type: mteb/sts17-crosslingual-sts
1930
+ name: MTEB STS17 (es-en)
1931
+ config: es-en
1932
+ split: test
1933
+ revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
1934
+ metrics:
1935
+ - type: cos_sim_pearson
1936
+ value: 17.49363358339176
1937
+ - type: cos_sim_spearman
1938
+ value: 16.31316318682868
1939
+ - type: euclidean_pearson
1940
+ value: 17.834234153786475
1941
+ - type: euclidean_spearman
1942
+ value: 16.31316318682868
1943
+ - type: manhattan_pearson
1944
+ value: 16.928139101229352
1945
+ - type: manhattan_spearman
1946
+ value: 15.00071366769135
1947
+ - task:
1948
+ type: STS
1949
+ dataset:
1950
+ type: mteb/sts17-crosslingual-sts
1951
+ name: MTEB STS17 (es-es)
1952
+ config: es-es
1953
+ split: test
1954
+ revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
1955
+ metrics:
1956
+ - type: cos_sim_pearson
1957
+ value: 77.04145671005833
1958
+ - type: cos_sim_spearman
1959
+ value: 76.11599994398748
1960
+ - type: euclidean_pearson
1961
+ value: 78.21801117699432
1962
+ - type: euclidean_spearman
1963
+ value: 76.11599994398748
1964
+ - type: manhattan_pearson
1965
+ value: 77.87062358292948
1966
+ - type: manhattan_spearman
1967
+ value: 75.64561332109221
1968
+ - task:
1969
+ type: STS
1970
+ dataset:
1971
+ type: mteb/sts17-crosslingual-sts
1972
+ name: MTEB STS17 (fr-en)
1973
+ config: fr-en
1974
+ split: test
1975
+ revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
1976
+ metrics:
1977
+ - type: cos_sim_pearson
1978
+ value: 37.9961687967439
1979
+ - type: cos_sim_spearman
1980
+ value: 37.09338306656542
1981
+ - type: euclidean_pearson
1982
+ value: 37.81002317191932
1983
+ - type: euclidean_spearman
1984
+ value: 37.09338306656542
1985
+ - type: manhattan_pearson
1986
+ value: 37.58237523973875
1987
+ - type: manhattan_spearman
1988
+ value: 36.52020936925911
1989
+ - task:
1990
+ type: STS
1991
+ dataset:
1992
+ type: mteb/sts17-crosslingual-sts
1993
+ name: MTEB STS17 (it-en)
1994
+ config: it-en
1995
+ split: test
1996
+ revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
1997
+ metrics:
1998
+ - type: cos_sim_pearson
1999
+ value: 26.739991134614716
2000
+ - type: cos_sim_spearman
2001
+ value: 24.4457755448559
2002
+ - type: euclidean_pearson
2003
+ value: 26.804935356831862
2004
+ - type: euclidean_spearman
2005
+ value: 24.442532087041023
2006
+ - type: manhattan_pearson
2007
+ value: 27.571123840765026
2008
+ - type: manhattan_spearman
2009
+ value: 25.554721155049045
2010
+ - task:
2011
+ type: STS
2012
+ dataset:
2013
+ type: mteb/sts17-crosslingual-sts
2014
+ name: MTEB STS17 (nl-en)
2015
+ config: nl-en
2016
+ split: test
2017
+ revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
2018
+ metrics:
2019
+ - type: cos_sim_pearson
2020
+ value: 32.71761762628939
2021
+ - type: cos_sim_spearman
2022
+ value: 28.99879893370601
2023
+ - type: euclidean_pearson
2024
+ value: 32.92831060810701
2025
+ - type: euclidean_spearman
2026
+ value: 28.99879893370601
2027
+ - type: manhattan_pearson
2028
+ value: 33.30410551798337
2029
+ - type: manhattan_spearman
2030
+ value: 29.442853829506593
2031
+ - task:
2032
+ type: STS
2033
+ dataset:
2034
+ type: mteb/sts22-crosslingual-sts
2035
+ name: MTEB STS22 (en)
2036
+ config: en
2037
+ split: test
2038
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2039
+ metrics:
2040
+ - type: cos_sim_pearson
2041
+ value: 67.09882753030891
2042
+ - type: cos_sim_spearman
2043
+ value: 67.21465212910987
2044
+ - type: euclidean_pearson
2045
+ value: 68.21374069918403
2046
+ - type: euclidean_spearman
2047
+ value: 67.21465212910987
2048
+ - type: manhattan_pearson
2049
+ value: 68.41388868877884
2050
+ - type: manhattan_spearman
2051
+ value: 67.83615682571867
2052
+ - task:
2053
+ type: STS
2054
+ dataset:
2055
+ type: mteb/sts22-crosslingual-sts
2056
+ name: MTEB STS22 (de)
2057
+ config: de
2058
+ split: test
2059
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2060
+ metrics:
2061
+ - type: cos_sim_pearson
2062
+ value: 26.596033966146116
2063
+ - type: cos_sim_spearman
2064
+ value: 31.044353994772354
2065
+ - type: euclidean_pearson
2066
+ value: 21.51728902500591
2067
+ - type: euclidean_spearman
2068
+ value: 31.044353994772354
2069
+ - type: manhattan_pearson
2070
+ value: 21.718468273577894
2071
+ - type: manhattan_spearman
2072
+ value: 31.197915595597696
2073
+ - task:
2074
+ type: STS
2075
+ dataset:
2076
+ type: mteb/sts22-crosslingual-sts
2077
+ name: MTEB STS22 (es)
2078
+ config: es
2079
+ split: test
2080
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2081
+ metrics:
2082
+ - type: cos_sim_pearson
2083
+ value: 44.33815143022264
2084
+ - type: cos_sim_spearman
2085
+ value: 54.77772552456677
2086
+ - type: euclidean_pearson
2087
+ value: 48.483578263920634
2088
+ - type: euclidean_spearman
2089
+ value: 54.77772552456677
2090
+ - type: manhattan_pearson
2091
+ value: 49.29424073081744
2092
+ - type: manhattan_spearman
2093
+ value: 55.259696552690954
2094
+ - task:
2095
+ type: STS
2096
+ dataset:
2097
+ type: mteb/sts22-crosslingual-sts
2098
+ name: MTEB STS22 (pl)
2099
+ config: pl
2100
+ split: test
2101
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2102
+ metrics:
2103
+ - type: cos_sim_pearson
2104
+ value: 8.000336595206134
2105
+ - type: cos_sim_spearman
2106
+ value: 26.768906191975933
2107
+ - type: euclidean_pearson
2108
+ value: 1.4181188576056134
2109
+ - type: euclidean_spearman
2110
+ value: 26.768906191975933
2111
+ - type: manhattan_pearson
2112
+ value: 1.588769366202155
2113
+ - type: manhattan_spearman
2114
+ value: 26.76300987426348
2115
+ - task:
2116
+ type: STS
2117
+ dataset:
2118
+ type: mteb/sts22-crosslingual-sts
2119
+ name: MTEB STS22 (tr)
2120
+ config: tr
2121
+ split: test
2122
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2123
+ metrics:
2124
+ - type: cos_sim_pearson
2125
+ value: 20.597902459466386
2126
+ - type: cos_sim_spearman
2127
+ value: 33.694510807738595
2128
+ - type: euclidean_pearson
2129
+ value: 26.964862787540962
2130
+ - type: euclidean_spearman
2131
+ value: 33.694510807738595
2132
+ - type: manhattan_pearson
2133
+ value: 27.530294926210807
2134
+ - type: manhattan_spearman
2135
+ value: 33.74254435313719
2136
+ - task:
2137
+ type: STS
2138
+ dataset:
2139
+ type: mteb/sts22-crosslingual-sts
2140
+ name: MTEB STS22 (ar)
2141
+ config: ar
2142
+ split: test
2143
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2144
+ metrics:
2145
+ - type: cos_sim_pearson
2146
+ value: 5.006610360999117
2147
+ - type: cos_sim_spearman
2148
+ value: 22.63866797712348
2149
+ - type: euclidean_pearson
2150
+ value: 13.082283087945362
2151
+ - type: euclidean_spearman
2152
+ value: 22.63866797712348
2153
+ - type: manhattan_pearson
2154
+ value: 13.260328120447722
2155
+ - type: manhattan_spearman
2156
+ value: 22.340169287120716
2157
+ - task:
2158
+ type: STS
2159
+ dataset:
2160
+ type: mteb/sts22-crosslingual-sts
2161
+ name: MTEB STS22 (ru)
2162
+ config: ru
2163
+ split: test
2164
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2165
+ metrics:
2166
+ - type: cos_sim_pearson
2167
+ value: 0.03100716792233671
2168
+ - type: cos_sim_spearman
2169
+ value: 14.721380413194854
2170
+ - type: euclidean_pearson
2171
+ value: 4.871526064730011
2172
+ - type: euclidean_spearman
2173
+ value: 14.721380413194854
2174
+ - type: manhattan_pearson
2175
+ value: 5.7576102223040735
2176
+ - type: manhattan_spearman
2177
+ value: 15.08182690716095
2178
+ - task:
2179
+ type: STS
2180
+ dataset:
2181
+ type: mteb/sts22-crosslingual-sts
2182
+ name: MTEB STS22 (zh)
2183
+ config: zh
2184
+ split: test
2185
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2186
+ metrics:
2187
+ - type: cos_sim_pearson
2188
+ value: 23.127885111414432
2189
+ - type: cos_sim_spearman
2190
+ value: 44.92964024177277
2191
+ - type: euclidean_pearson
2192
+ value: 31.061639313469925
2193
+ - type: euclidean_spearman
2194
+ value: 44.92964024177277
2195
+ - type: manhattan_pearson
2196
+ value: 31.77656358573927
2197
+ - type: manhattan_spearman
2198
+ value: 44.964763982886375
2199
+ - task:
2200
+ type: STS
2201
+ dataset:
2202
+ type: mteb/sts22-crosslingual-sts
2203
+ name: MTEB STS22 (fr)
2204
+ config: fr
2205
+ split: test
2206
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2207
+ metrics:
2208
+ - type: cos_sim_pearson
2209
+ value: 70.64344773137496
2210
+ - type: cos_sim_spearman
2211
+ value: 77.00398643056744
2212
+ - type: euclidean_pearson
2213
+ value: 71.58320199923101
2214
+ - type: euclidean_spearman
2215
+ value: 77.00398643056744
2216
+ - type: manhattan_pearson
2217
+ value: 71.64373853764818
2218
+ - type: manhattan_spearman
2219
+ value: 76.71158725879226
2220
+ - task:
2221
+ type: STS
2222
+ dataset:
2223
+ type: mteb/sts22-crosslingual-sts
2224
+ name: MTEB STS22 (de-en)
2225
+ config: de-en
2226
+ split: test
2227
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2228
+ metrics:
2229
+ - type: cos_sim_pearson
2230
+ value: 47.54531236654512
2231
+ - type: cos_sim_spearman
2232
+ value: 44.038685024247606
2233
+ - type: euclidean_pearson
2234
+ value: 48.46975590869453
2235
+ - type: euclidean_spearman
2236
+ value: 44.038685024247606
2237
+ - type: manhattan_pearson
2238
+ value: 48.10217367438755
2239
+ - type: manhattan_spearman
2240
+ value: 44.4428504653391
2241
+ - task:
2242
+ type: STS
2243
+ dataset:
2244
+ type: mteb/sts22-crosslingual-sts
2245
+ name: MTEB STS22 (es-en)
2246
+ config: es-en
2247
+ split: test
2248
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2249
+ metrics:
2250
+ - type: cos_sim_pearson
2251
+ value: 49.93601240112664
2252
+ - type: cos_sim_spearman
2253
+ value: 53.41895837272506
2254
+ - type: euclidean_pearson
2255
+ value: 50.16469746986203
2256
+ - type: euclidean_spearman
2257
+ value: 53.41895837272506
2258
+ - type: manhattan_pearson
2259
+ value: 49.86265183075983
2260
+ - type: manhattan_spearman
2261
+ value: 53.10065931046005
2262
+ - task:
2263
+ type: STS
2264
+ dataset:
2265
+ type: mteb/sts22-crosslingual-sts
2266
+ name: MTEB STS22 (it)
2267
+ config: it
2268
+ split: test
2269
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2270
+ metrics:
2271
+ - type: cos_sim_pearson
2272
+ value: 57.4312835830767
2273
+ - type: cos_sim_spearman
2274
+ value: 60.39610834515271
2275
+ - type: euclidean_pearson
2276
+ value: 57.81507077373551
2277
+ - type: euclidean_spearman
2278
+ value: 60.39610834515271
2279
+ - type: manhattan_pearson
2280
+ value: 57.83823485037898
2281
+ - type: manhattan_spearman
2282
+ value: 60.374938260317535
2283
+ - task:
2284
+ type: STS
2285
+ dataset:
2286
+ type: mteb/sts22-crosslingual-sts
2287
+ name: MTEB STS22 (pl-en)
2288
+ config: pl-en
2289
+ split: test
2290
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2291
+ metrics:
2292
+ - type: cos_sim_pearson
2293
+ value: 35.08730015173829
2294
+ - type: cos_sim_spearman
2295
+ value: 32.79791295777814
2296
+ - type: euclidean_pearson
2297
+ value: 34.54132550386404
2298
+ - type: euclidean_spearman
2299
+ value: 32.79791295777814
2300
+ - type: manhattan_pearson
2301
+ value: 36.273935331272256
2302
+ - type: manhattan_spearman
2303
+ value: 35.88704294252439
2304
+ - task:
2305
+ type: STS
2306
+ dataset:
2307
+ type: mteb/sts22-crosslingual-sts
2308
+ name: MTEB STS22 (zh-en)
2309
+ config: zh-en
2310
+ split: test
2311
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2312
+ metrics:
2313
+ - type: cos_sim_pearson
2314
+ value: 37.41111741585122
2315
+ - type: cos_sim_spearman
2316
+ value: 41.64399741744448
2317
+ - type: euclidean_pearson
2318
+ value: 36.83160927711053
2319
+ - type: euclidean_spearman
2320
+ value: 41.64399741744448
2321
+ - type: manhattan_pearson
2322
+ value: 35.71015224548175
2323
+ - type: manhattan_spearman
2324
+ value: 41.460551673456045
2325
+ - task:
2326
+ type: STS
2327
+ dataset:
2328
+ type: mteb/sts22-crosslingual-sts
2329
+ name: MTEB STS22 (es-it)
2330
+ config: es-it
2331
+ split: test
2332
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2333
+ metrics:
2334
+ - type: cos_sim_pearson
2335
+ value: 42.568537775842245
2336
+ - type: cos_sim_spearman
2337
+ value: 44.2699366594503
2338
+ - type: euclidean_pearson
2339
+ value: 43.569828137034264
2340
+ - type: euclidean_spearman
2341
+ value: 44.2699366594503
2342
+ - type: manhattan_pearson
2343
+ value: 43.954212787242284
2344
+ - type: manhattan_spearman
2345
+ value: 44.32159550471527
2346
+ - task:
2347
+ type: STS
2348
+ dataset:
2349
+ type: mteb/sts22-crosslingual-sts
2350
+ name: MTEB STS22 (de-fr)
2351
+ config: de-fr
2352
+ split: test
2353
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2354
+ metrics:
2355
+ - type: cos_sim_pearson
2356
+ value: 26.472844763068938
2357
+ - type: cos_sim_spearman
2358
+ value: 30.067587482078228
2359
+ - type: euclidean_pearson
2360
+ value: 26.87230792075073
2361
+ - type: euclidean_spearman
2362
+ value: 30.067587482078228
2363
+ - type: manhattan_pearson
2364
+ value: 25.808959063835424
2365
+ - type: manhattan_spearman
2366
+ value: 27.996294873002153
2367
+ - task:
2368
+ type: STS
2369
+ dataset:
2370
+ type: mteb/sts22-crosslingual-sts
2371
+ name: MTEB STS22 (de-pl)
2372
+ config: de-pl
2373
+ split: test
2374
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2375
+ metrics:
2376
+ - type: cos_sim_pearson
2377
+ value: 7.026566971631159
2378
+ - type: cos_sim_spearman
2379
+ value: 4.9270565599404135
2380
+ - type: euclidean_pearson
2381
+ value: 6.729027056926625
2382
+ - type: euclidean_spearman
2383
+ value: 4.9270565599404135
2384
+ - type: manhattan_pearson
2385
+ value: 9.01762174854638
2386
+ - type: manhattan_spearman
2387
+ value: 7.359790736410993
2388
+ - task:
2389
+ type: STS
2390
+ dataset:
2391
+ type: mteb/sts22-crosslingual-sts
2392
+ name: MTEB STS22 (fr-pl)
2393
+ config: fr-pl
2394
+ split: test
2395
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2396
+ metrics:
2397
+ - type: cos_sim_pearson
2398
+ value: 54.305559003968206
2399
+ - type: cos_sim_spearman
2400
+ value: 50.709255283710995
2401
+ - type: euclidean_pearson
2402
+ value: 53.00660084455784
2403
+ - type: euclidean_spearman
2404
+ value: 50.709255283710995
2405
+ - type: manhattan_pearson
2406
+ value: 52.33784187543789
2407
+ - type: manhattan_spearman
2408
+ value: 50.709255283710995
2409
+ - task:
2410
+ type: STS
2411
+ dataset:
2412
+ type: mteb/stsbenchmark-sts
2413
+ name: MTEB STSBenchmark
2414
+ config: default
2415
+ split: test
2416
+ revision: 8913289635987208e6e7c72789e4be2fe94b6abd
2417
+ metrics:
2418
+ - type: cos_sim_pearson
2419
+ value: 82.7406424090513
2420
+ - type: cos_sim_spearman
2421
+ value: 82.03246731235654
2422
+ - type: euclidean_pearson
2423
+ value: 82.55616747173353
2424
+ - type: euclidean_spearman
2425
+ value: 82.03246731235654
2426
+ - type: manhattan_pearson
2427
+ value: 82.49144455072748
2428
+ - type: manhattan_spearman
2429
+ value: 81.94552526855261
2430
+ - task:
2431
+ type: Reranking
2432
+ dataset:
2433
+ type: mteb/scidocs-reranking
2434
+ name: MTEB SciDocsRR
2435
+ config: default
2436
+ split: test
2437
+ revision: 56a6d0140cf6356659e2a7c1413286a774468d44
2438
+ metrics:
2439
+ - type: map
2440
+ value: 87.11941318470207
2441
+ - type: mrr
2442
+ value: 96.39370705547176
2443
+ - task:
2444
+ type: Retrieval
2445
+ dataset:
2446
+ type: scifact
2447
+ name: MTEB SciFact
2448
+ config: default
2449
+ split: test
2450
+ revision: a75ae049398addde9b70f6b268875f5cbce99089
2451
+ metrics:
2452
+ - type: map_at_1
2453
+ value: 48.233
2454
+ - type: map_at_10
2455
+ value: 59.592999999999996
2456
+ - type: map_at_100
2457
+ value: 60.307
2458
+ - type: map_at_1000
2459
+ value: 60.343
2460
+ - type: map_at_3
2461
+ value: 56.564
2462
+ - type: map_at_5
2463
+ value: 58.826
2464
+ - type: ndcg_at_1
2465
+ value: 50.333000000000006
2466
+ - type: ndcg_at_10
2467
+ value: 64.508
2468
+ - type: ndcg_at_100
2469
+ value: 67.66499999999999
2470
+ - type: ndcg_at_1000
2471
+ value: 68.552
2472
+ - type: ndcg_at_3
2473
+ value: 59.673
2474
+ - type: ndcg_at_5
2475
+ value: 62.928
2476
+ - type: precision_at_1
2477
+ value: 50.333000000000006
2478
+ - type: precision_at_10
2479
+ value: 8.833
2480
+ - type: precision_at_100
2481
+ value: 1.053
2482
+ - type: precision_at_1000
2483
+ value: 0.11199999999999999
2484
+ - type: precision_at_3
2485
+ value: 23.778
2486
+ - type: precision_at_5
2487
+ value: 16.400000000000002
2488
+ - type: recall_at_1
2489
+ value: 48.233
2490
+ - type: recall_at_10
2491
+ value: 78.333
2492
+ - type: recall_at_100
2493
+ value: 92.5
2494
+ - type: recall_at_1000
2495
+ value: 99.333
2496
+ - type: recall_at_3
2497
+ value: 66.033
2498
+ - type: recall_at_5
2499
+ value: 73.79400000000001
2500
+ - task:
2501
+ type: PairClassification
2502
+ dataset:
2503
+ type: mteb/sprintduplicatequestions-pairclassification
2504
+ name: MTEB SprintDuplicateQuestions
2505
+ config: default
2506
+ split: test
2507
+ revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea
2508
+ metrics:
2509
+ - type: cos_sim_accuracy
2510
+ value: 99.78514851485149
2511
+ - type: cos_sim_ap
2512
+ value: 94.55063045792446
2513
+ - type: cos_sim_f1
2514
+ value: 89.01265822784809
2515
+ - type: cos_sim_precision
2516
+ value: 90.15384615384615
2517
+ - type: cos_sim_recall
2518
+ value: 87.9
2519
+ - type: dot_accuracy
2520
+ value: 99.78514851485149
2521
+ - type: dot_ap
2522
+ value: 94.55063045792447
2523
+ - type: dot_f1
2524
+ value: 89.01265822784809
2525
+ - type: dot_precision
2526
+ value: 90.15384615384615
2527
+ - type: dot_recall
2528
+ value: 87.9
2529
+ - type: euclidean_accuracy
2530
+ value: 99.78514851485149
2531
+ - type: euclidean_ap
2532
+ value: 94.55063045792447
2533
+ - type: euclidean_f1
2534
+ value: 89.01265822784809
2535
+ - type: euclidean_precision
2536
+ value: 90.15384615384615
2537
+ - type: euclidean_recall
2538
+ value: 87.9
2539
+ - type: manhattan_accuracy
2540
+ value: 99.78415841584159
2541
+ - type: manhattan_ap
2542
+ value: 94.54002074215008
2543
+ - type: manhattan_f1
2544
+ value: 88.98989898989899
2545
+ - type: manhattan_precision
2546
+ value: 89.89795918367346
2547
+ - type: manhattan_recall
2548
+ value: 88.1
2549
+ - type: max_accuracy
2550
+ value: 99.78514851485149
2551
+ - type: max_ap
2552
+ value: 94.55063045792447
2553
+ - type: max_f1
2554
+ value: 89.01265822784809
2555
+ - task:
2556
+ type: Clustering
2557
+ dataset:
2558
+ type: mteb/stackexchange-clustering
2559
+ name: MTEB StackExchangeClustering
2560
+ config: default
2561
+ split: test
2562
+ revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235
2563
+ metrics:
2564
+ - type: v_measure
2565
+ value: 53.361421662036015
2566
+ - task:
2567
+ type: Clustering
2568
+ dataset:
2569
+ type: mteb/stackexchange-clustering-p2p
2570
+ name: MTEB StackExchangeClusteringP2P
2571
+ config: default
2572
+ split: test
2573
+ revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0
2574
+ metrics:
2575
+ - type: v_measure
2576
+ value: 38.001825627800976
2577
+ - task:
2578
+ type: Reranking
2579
+ dataset:
2580
+ type: mteb/stackoverflowdupquestions-reranking
2581
+ name: MTEB StackOverflowDupQuestions
2582
+ config: default
2583
+ split: test
2584
+ revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9
2585
+ metrics:
2586
+ - type: map
2587
+ value: 50.762134384316084
2588
+ - type: mrr
2589
+ value: 51.39383594346829
2590
+ - task:
2591
+ type: Summarization
2592
+ dataset:
2593
+ type: mteb/summeval
2594
+ name: MTEB SummEval
2595
+ config: default
2596
+ split: test
2597
+ revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122
2598
+ metrics:
2599
+ - type: cos_sim_pearson
2600
+ value: 30.508420334813536
2601
+ - type: cos_sim_spearman
2602
+ value: 30.808757671244493
2603
+ - type: dot_pearson
2604
+ value: 30.508418240633862
2605
+ - type: dot_spearman
2606
+ value: 30.808757671244493
2607
+ - task:
2608
+ type: Retrieval
2609
+ dataset:
2610
+ type: trec-covid
2611
+ name: MTEB TRECCOVID
2612
+ config: default
2613
+ split: test
2614
+ revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217
2615
+ metrics:
2616
+ - type: map_at_1
2617
+ value: 0.169
2618
+ - type: map_at_10
2619
+ value: 1.054
2620
+ - type: map_at_100
2621
+ value: 5.308
2622
+ - type: map_at_1000
2623
+ value: 13.313
2624
+ - type: map_at_3
2625
+ value: 0.40800000000000003
2626
+ - type: map_at_5
2627
+ value: 0.627
2628
+ - type: ndcg_at_1
2629
+ value: 56.00000000000001
2630
+ - type: ndcg_at_10
2631
+ value: 47.246
2632
+ - type: ndcg_at_100
2633
+ value: 35.172
2634
+ - type: ndcg_at_1000
2635
+ value: 34.031
2636
+ - type: ndcg_at_3
2637
+ value: 51.939
2638
+ - type: ndcg_at_5
2639
+ value: 50.568999999999996
2640
+ - type: precision_at_1
2641
+ value: 62.0
2642
+ - type: precision_at_10
2643
+ value: 50.4
2644
+ - type: precision_at_100
2645
+ value: 36.14
2646
+ - type: precision_at_1000
2647
+ value: 15.45
2648
+ - type: precision_at_3
2649
+ value: 56.00000000000001
2650
+ - type: precision_at_5
2651
+ value: 55.2
2652
+ - type: recall_at_1
2653
+ value: 0.169
2654
+ - type: recall_at_10
2655
+ value: 1.284
2656
+ - type: recall_at_100
2657
+ value: 8.552
2658
+ - type: recall_at_1000
2659
+ value: 32.81
2660
+ - type: recall_at_3
2661
+ value: 0.44
2662
+ - type: recall_at_5
2663
+ value: 0.709
2664
+ - task:
2665
+ type: Retrieval
2666
+ dataset:
2667
+ type: webis-touche2020
2668
+ name: MTEB Touche2020
2669
+ config: default
2670
+ split: test
2671
+ revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b
2672
+ metrics:
2673
+ - type: map_at_1
2674
+ value: 1.49
2675
+ - type: map_at_10
2676
+ value: 6.39
2677
+ - type: map_at_100
2678
+ value: 11.424
2679
+ - type: map_at_1000
2680
+ value: 12.847
2681
+ - type: map_at_3
2682
+ value: 3.055
2683
+ - type: map_at_5
2684
+ value: 3.966
2685
+ - type: ndcg_at_1
2686
+ value: 17.347
2687
+ - type: ndcg_at_10
2688
+ value: 16.904
2689
+ - type: ndcg_at_100
2690
+ value: 29.187
2691
+ - type: ndcg_at_1000
2692
+ value: 40.994
2693
+ - type: ndcg_at_3
2694
+ value: 15.669
2695
+ - type: ndcg_at_5
2696
+ value: 16.034000000000002
2697
+ - type: precision_at_1
2698
+ value: 18.367
2699
+ - type: precision_at_10
2700
+ value: 16.326999999999998
2701
+ - type: precision_at_100
2702
+ value: 6.673
2703
+ - type: precision_at_1000
2704
+ value: 1.439
2705
+ - type: precision_at_3
2706
+ value: 17.687
2707
+ - type: precision_at_5
2708
+ value: 17.143
2709
+ - type: recall_at_1
2710
+ value: 1.49
2711
+ - type: recall_at_10
2712
+ value: 12.499
2713
+ - type: recall_at_100
2714
+ value: 41.711
2715
+ - type: recall_at_1000
2716
+ value: 78.286
2717
+ - type: recall_at_3
2718
+ value: 4.055000000000001
2719
+ - type: recall_at_5
2720
+ value: 6.5040000000000004
2721
+ - task:
2722
+ type: Classification
2723
+ dataset:
2724
+ type: mteb/toxic_conversations_50k
2725
+ name: MTEB ToxicConversationsClassification
2726
+ config: default
2727
+ split: test
2728
+ revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
2729
+ metrics:
2730
+ - type: accuracy
2731
+ value: 66.9918
2732
+ - type: ap
2733
+ value: 12.24755801720171
2734
+ - type: f1
2735
+ value: 51.31653313211933
2736
+ - task:
2737
+ type: Classification
2738
+ dataset:
2739
+ type: mteb/tweet_sentiment_extraction
2740
+ name: MTEB TweetSentimentExtractionClassification
2741
+ config: default
2742
+ split: test
2743
+ revision: 62146448f05be9e52a36b8ee9936447ea787eede
2744
+ metrics:
2745
+ - type: accuracy
2746
+ value: 55.410299943406905
2747
+ - type: f1
2748
+ value: 55.71547395803944
2749
+ - task:
2750
+ type: Clustering
2751
+ dataset:
2752
+ type: mteb/twentynewsgroups-clustering
2753
+ name: MTEB TwentyNewsgroupsClustering
2754
+ config: default
2755
+ split: test
2756
+ revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4
2757
+ metrics:
2758
+ - type: v_measure
2759
+ value: 46.860271427647774
2760
+ - task:
2761
+ type: PairClassification
2762
+ dataset:
2763
+ type: mteb/twittersemeval2015-pairclassification
2764
+ name: MTEB TwitterSemEval2015
2765
+ config: default
2766
+ split: test
2767
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2768
+ metrics:
2769
+ - type: cos_sim_accuracy
2770
+ value: 84.1151576563152
2771
+ - type: cos_sim_ap
2772
+ value: 67.85802440228593
2773
+ - type: cos_sim_f1
2774
+ value: 64.08006919560113
2775
+ - type: cos_sim_precision
2776
+ value: 60.260283523123405
2777
+ - type: cos_sim_recall
2778
+ value: 68.41688654353561
2779
+ - type: dot_accuracy
2780
+ value: 84.1151576563152
2781
+ - type: dot_ap
2782
+ value: 67.85802503410727
2783
+ - type: dot_f1
2784
+ value: 64.08006919560113
2785
+ - type: dot_precision
2786
+ value: 60.260283523123405
2787
+ - type: dot_recall
2788
+ value: 68.41688654353561
2789
+ - type: euclidean_accuracy
2790
+ value: 84.1151576563152
2791
+ - type: euclidean_ap
2792
+ value: 67.85802845168082
2793
+ - type: euclidean_f1
2794
+ value: 64.08006919560113
2795
+ - type: euclidean_precision
2796
+ value: 60.260283523123405
2797
+ - type: euclidean_recall
2798
+ value: 68.41688654353561
2799
+ - type: manhattan_accuracy
2800
+ value: 83.96614412588663
2801
+ - type: manhattan_ap
2802
+ value: 67.66935451307549
2803
+ - type: manhattan_f1
2804
+ value: 63.82363570654138
2805
+ - type: manhattan_precision
2806
+ value: 58.72312125914432
2807
+ - type: manhattan_recall
2808
+ value: 69.89445910290237
2809
+ - type: max_accuracy
2810
+ value: 84.1151576563152
2811
+ - type: max_ap
2812
+ value: 67.85802845168082
2813
+ - type: max_f1
2814
+ value: 64.08006919560113
2815
+ - task:
2816
+ type: PairClassification
2817
+ dataset:
2818
+ type: mteb/twitterurlcorpus-pairclassification
2819
+ name: MTEB TwitterURLCorpus
2820
+ config: default
2821
+ split: test
2822
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2823
+ metrics:
2824
+ - type: cos_sim_accuracy
2825
+ value: 88.2504754142896
2826
+ - type: cos_sim_ap
2827
+ value: 84.70165951451109
2828
+ - type: cos_sim_f1
2829
+ value: 76.57057281916886
2830
+ - type: cos_sim_precision
2831
+ value: 74.5226643346451
2832
+ - type: cos_sim_recall
2833
+ value: 78.73421619956883
2834
+ - type: dot_accuracy
2835
+ value: 88.2504754142896
2836
+ - type: dot_ap
2837
+ value: 84.7016596919848
2838
+ - type: dot_f1
2839
+ value: 76.57057281916886
2840
+ - type: dot_precision
2841
+ value: 74.5226643346451
2842
+ - type: dot_recall
2843
+ value: 78.73421619956883
2844
+ - type: euclidean_accuracy
2845
+ value: 88.2504754142896
2846
+ - type: euclidean_ap
2847
+ value: 84.70166029488888
2848
+ - type: euclidean_f1
2849
+ value: 76.57057281916886
2850
+ - type: euclidean_precision
2851
+ value: 74.5226643346451
2852
+ - type: euclidean_recall
2853
+ value: 78.73421619956883
2854
+ - type: manhattan_accuracy
2855
+ value: 88.27376101214732
2856
+ - type: manhattan_ap
2857
+ value: 84.63518812822186
2858
+ - type: manhattan_f1
2859
+ value: 76.55138674594514
2860
+ - type: manhattan_precision
2861
+ value: 74.86934118513065
2862
+ - type: manhattan_recall
2863
+ value: 78.31074838312288
2864
+ - type: max_accuracy
2865
+ value: 88.27376101214732
2866
+ - type: max_ap
2867
+ value: 84.70166029488888
2868
+ - type: max_f1
2869
+ value: 76.57057281916886
2870
  ---
2871
 
 
2872
  # all-MiniLM-L6-v2
2873
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
2874
 
 
2930
 
2931
  ## Evaluation Results
2932
 
2933
+ For an automated evaluation of this model, see *MTEB*: https://huggingface.co/spaces/mteb/leaderboard or the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L12-v2)
2934
 
2935
  ------
2936