Add MTEB metadata
#2
by
Muennighoff
- opened
README.md
CHANGED
@@ -4,6 +4,7 @@ tags:
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
|
|
7 |
language: en
|
8 |
license: apache-2.0
|
9 |
datasets:
|
@@ -28,10 +29,2846 @@ datasets:
|
|
28 |
- embedding-data/SPECTER
|
29 |
- embedding-data/PAQ_pairs
|
30 |
- embedding-data/WikiAnswers
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
---
|
33 |
|
34 |
-
|
35 |
# all-MiniLM-L6-v2
|
36 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
37 |
|
@@ -93,7 +2930,7 @@ print(sentence_embeddings)
|
|
93 |
|
94 |
## Evaluation Results
|
95 |
|
96 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-
|
97 |
|
98 |
------
|
99 |
|
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
+
- mteb
|
8 |
language: en
|
9 |
license: apache-2.0
|
10 |
datasets:
|
|
|
29 |
- embedding-data/SPECTER
|
30 |
- embedding-data/PAQ_pairs
|
31 |
- embedding-data/WikiAnswers
|
32 |
+
model-index:
|
33 |
+
- name: all-MiniLM-L6-v2
|
34 |
+
results:
|
35 |
+
- task:
|
36 |
+
type: Classification
|
37 |
+
dataset:
|
38 |
+
type: mteb/amazon_counterfactual
|
39 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
40 |
+
config: en
|
41 |
+
split: test
|
42 |
+
revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
|
43 |
+
metrics:
|
44 |
+
- type: accuracy
|
45 |
+
value: 64.14925373134331
|
46 |
+
- type: ap
|
47 |
+
value: 27.237875815186907
|
48 |
+
- type: f1
|
49 |
+
value: 58.03105716318715
|
50 |
+
- task:
|
51 |
+
type: Classification
|
52 |
+
dataset:
|
53 |
+
type: mteb/amazon_polarity
|
54 |
+
name: MTEB AmazonPolarityClassification
|
55 |
+
config: default
|
56 |
+
split: test
|
57 |
+
revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1
|
58 |
+
metrics:
|
59 |
+
- type: accuracy
|
60 |
+
value: 62.582975
|
61 |
+
- type: ap
|
62 |
+
value: 58.26562634146188
|
63 |
+
- type: f1
|
64 |
+
value: 62.304673961004156
|
65 |
+
- task:
|
66 |
+
type: Classification
|
67 |
+
dataset:
|
68 |
+
type: mteb/amazon_reviews_multi
|
69 |
+
name: MTEB AmazonReviewsClassification (en)
|
70 |
+
config: en
|
71 |
+
split: test
|
72 |
+
revision: c379a6705fec24a2493fa68e011692605f44e119
|
73 |
+
metrics:
|
74 |
+
- type: accuracy
|
75 |
+
value: 31.785999999999998
|
76 |
+
- type: f1
|
77 |
+
value: 31.40726949960717
|
78 |
+
- task:
|
79 |
+
type: Retrieval
|
80 |
+
dataset:
|
81 |
+
type: arguana
|
82 |
+
name: MTEB ArguAna
|
83 |
+
config: default
|
84 |
+
split: test
|
85 |
+
revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3
|
86 |
+
metrics:
|
87 |
+
- type: map_at_1
|
88 |
+
value: 25.605
|
89 |
+
- type: map_at_10
|
90 |
+
value: 41.165
|
91 |
+
- type: map_at_100
|
92 |
+
value: 42.230000000000004
|
93 |
+
- type: map_at_1000
|
94 |
+
value: 42.241
|
95 |
+
- type: map_at_3
|
96 |
+
value: 35.965
|
97 |
+
- type: map_at_5
|
98 |
+
value: 38.981
|
99 |
+
- type: ndcg_at_1
|
100 |
+
value: 25.605
|
101 |
+
- type: ndcg_at_10
|
102 |
+
value: 50.166999999999994
|
103 |
+
- type: ndcg_at_100
|
104 |
+
value: 54.534000000000006
|
105 |
+
- type: ndcg_at_1000
|
106 |
+
value: 54.772
|
107 |
+
- type: ndcg_at_3
|
108 |
+
value: 39.434000000000005
|
109 |
+
- type: ndcg_at_5
|
110 |
+
value: 44.876
|
111 |
+
- type: precision_at_1
|
112 |
+
value: 25.605
|
113 |
+
- type: precision_at_10
|
114 |
+
value: 7.908999999999999
|
115 |
+
- type: precision_at_100
|
116 |
+
value: 0.9769999999999999
|
117 |
+
- type: precision_at_1000
|
118 |
+
value: 0.1
|
119 |
+
- type: precision_at_3
|
120 |
+
value: 16.500999999999998
|
121 |
+
- type: precision_at_5
|
122 |
+
value: 12.546
|
123 |
+
- type: recall_at_1
|
124 |
+
value: 25.605
|
125 |
+
- type: recall_at_10
|
126 |
+
value: 79.09
|
127 |
+
- type: recall_at_100
|
128 |
+
value: 97.724
|
129 |
+
- type: recall_at_1000
|
130 |
+
value: 99.502
|
131 |
+
- type: recall_at_3
|
132 |
+
value: 49.502
|
133 |
+
- type: recall_at_5
|
134 |
+
value: 62.731
|
135 |
+
- task:
|
136 |
+
type: Clustering
|
137 |
+
dataset:
|
138 |
+
type: mteb/arxiv-clustering-p2p
|
139 |
+
name: MTEB ArxivClusteringP2P
|
140 |
+
config: default
|
141 |
+
split: test
|
142 |
+
revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8
|
143 |
+
metrics:
|
144 |
+
- type: v_measure
|
145 |
+
value: 46.54595079050156
|
146 |
+
- task:
|
147 |
+
type: Clustering
|
148 |
+
dataset:
|
149 |
+
type: mteb/arxiv-clustering-s2s
|
150 |
+
name: MTEB ArxivClusteringS2S
|
151 |
+
config: default
|
152 |
+
split: test
|
153 |
+
revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3
|
154 |
+
metrics:
|
155 |
+
- type: v_measure
|
156 |
+
value: 37.85709823840442
|
157 |
+
- task:
|
158 |
+
type: Reranking
|
159 |
+
dataset:
|
160 |
+
type: mteb/askubuntudupquestions-reranking
|
161 |
+
name: MTEB AskUbuntuDupQuestions
|
162 |
+
config: default
|
163 |
+
split: test
|
164 |
+
revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c
|
165 |
+
metrics:
|
166 |
+
- type: map
|
167 |
+
value: 63.47681681237331
|
168 |
+
- type: mrr
|
169 |
+
value: 77.08657608934617
|
170 |
+
- task:
|
171 |
+
type: STS
|
172 |
+
dataset:
|
173 |
+
type: mteb/biosses-sts
|
174 |
+
name: MTEB BIOSSES
|
175 |
+
config: default
|
176 |
+
split: test
|
177 |
+
revision: 9ee918f184421b6bd48b78f6c714d86546106103
|
178 |
+
metrics:
|
179 |
+
- type: cos_sim_pearson
|
180 |
+
value: 84.41897516342782
|
181 |
+
- type: cos_sim_spearman
|
182 |
+
value: 81.64041444909368
|
183 |
+
- type: euclidean_pearson
|
184 |
+
value: 82.67500318274435
|
185 |
+
- type: euclidean_spearman
|
186 |
+
value: 81.64041444909368
|
187 |
+
- type: manhattan_pearson
|
188 |
+
value: 82.35165974372227
|
189 |
+
- type: manhattan_spearman
|
190 |
+
value: 81.50968857884978
|
191 |
+
- task:
|
192 |
+
type: Classification
|
193 |
+
dataset:
|
194 |
+
type: mteb/banking77
|
195 |
+
name: MTEB Banking77Classification
|
196 |
+
config: default
|
197 |
+
split: test
|
198 |
+
revision: 44fa15921b4c889113cc5df03dd4901b49161ab7
|
199 |
+
metrics:
|
200 |
+
- type: accuracy
|
201 |
+
value: 79.75000000000001
|
202 |
+
- type: f1
|
203 |
+
value: 78.92604185699534
|
204 |
+
- task:
|
205 |
+
type: Clustering
|
206 |
+
dataset:
|
207 |
+
type: mteb/biorxiv-clustering-p2p
|
208 |
+
name: MTEB BiorxivClusteringP2P
|
209 |
+
config: default
|
210 |
+
split: test
|
211 |
+
revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55
|
212 |
+
metrics:
|
213 |
+
- type: v_measure
|
214 |
+
value: 38.48301914135123
|
215 |
+
- task:
|
216 |
+
type: Clustering
|
217 |
+
dataset:
|
218 |
+
type: mteb/biorxiv-clustering-s2s
|
219 |
+
name: MTEB BiorxivClusteringS2S
|
220 |
+
config: default
|
221 |
+
split: test
|
222 |
+
revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1
|
223 |
+
metrics:
|
224 |
+
- type: v_measure
|
225 |
+
value: 33.170209943399804
|
226 |
+
- task:
|
227 |
+
type: Retrieval
|
228 |
+
dataset:
|
229 |
+
type: BeIR/cqadupstack
|
230 |
+
name: MTEB CQADupstackAndroidRetrieval
|
231 |
+
config: default
|
232 |
+
split: test
|
233 |
+
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
|
234 |
+
metrics:
|
235 |
+
- type: map_at_1
|
236 |
+
value: 34.660000000000004
|
237 |
+
- type: map_at_10
|
238 |
+
value: 46.938
|
239 |
+
- type: map_at_100
|
240 |
+
value: 48.435
|
241 |
+
- type: map_at_1000
|
242 |
+
value: 48.555
|
243 |
+
- type: map_at_3
|
244 |
+
value: 43.034
|
245 |
+
- type: map_at_5
|
246 |
+
value: 45.055
|
247 |
+
- type: ndcg_at_1
|
248 |
+
value: 42.775
|
249 |
+
- type: ndcg_at_10
|
250 |
+
value: 53.82900000000001
|
251 |
+
- type: ndcg_at_100
|
252 |
+
value: 58.74700000000001
|
253 |
+
- type: ndcg_at_1000
|
254 |
+
value: 60.309000000000005
|
255 |
+
- type: ndcg_at_3
|
256 |
+
value: 48.487
|
257 |
+
- type: ndcg_at_5
|
258 |
+
value: 50.722
|
259 |
+
- type: precision_at_1
|
260 |
+
value: 42.775
|
261 |
+
- type: precision_at_10
|
262 |
+
value: 10.629
|
263 |
+
- type: precision_at_100
|
264 |
+
value: 1.652
|
265 |
+
- type: precision_at_1000
|
266 |
+
value: 0.209
|
267 |
+
- type: precision_at_3
|
268 |
+
value: 23.366999999999997
|
269 |
+
- type: precision_at_5
|
270 |
+
value: 16.967
|
271 |
+
- type: recall_at_1
|
272 |
+
value: 34.660000000000004
|
273 |
+
- type: recall_at_10
|
274 |
+
value: 66.465
|
275 |
+
- type: recall_at_100
|
276 |
+
value: 87.559
|
277 |
+
- type: recall_at_1000
|
278 |
+
value: 97.18299999999999
|
279 |
+
- type: recall_at_3
|
280 |
+
value: 51.01
|
281 |
+
- type: recall_at_5
|
282 |
+
value: 57.412
|
283 |
+
- task:
|
284 |
+
type: Retrieval
|
285 |
+
dataset:
|
286 |
+
type: BeIR/cqadupstack
|
287 |
+
name: MTEB CQADupstackEnglishRetrieval
|
288 |
+
config: default
|
289 |
+
split: test
|
290 |
+
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
|
291 |
+
metrics:
|
292 |
+
- type: map_at_1
|
293 |
+
value: 31.180999999999997
|
294 |
+
- type: map_at_10
|
295 |
+
value: 41.802
|
296 |
+
- type: map_at_100
|
297 |
+
value: 43.294
|
298 |
+
- type: map_at_1000
|
299 |
+
value: 43.438
|
300 |
+
- type: map_at_3
|
301 |
+
value: 38.668
|
302 |
+
- type: map_at_5
|
303 |
+
value: 40.559
|
304 |
+
- type: ndcg_at_1
|
305 |
+
value: 39.489999999999995
|
306 |
+
- type: ndcg_at_10
|
307 |
+
value: 47.776
|
308 |
+
- type: ndcg_at_100
|
309 |
+
value: 52.705
|
310 |
+
- type: ndcg_at_1000
|
311 |
+
value: 54.830999999999996
|
312 |
+
- type: ndcg_at_3
|
313 |
+
value: 43.649
|
314 |
+
- type: ndcg_at_5
|
315 |
+
value: 45.885
|
316 |
+
- type: precision_at_1
|
317 |
+
value: 39.489999999999995
|
318 |
+
- type: precision_at_10
|
319 |
+
value: 9.121
|
320 |
+
- type: precision_at_100
|
321 |
+
value: 1.504
|
322 |
+
- type: precision_at_1000
|
323 |
+
value: 0.2
|
324 |
+
- type: precision_at_3
|
325 |
+
value: 21.38
|
326 |
+
- type: precision_at_5
|
327 |
+
value: 15.35
|
328 |
+
- type: recall_at_1
|
329 |
+
value: 31.180999999999997
|
330 |
+
- type: recall_at_10
|
331 |
+
value: 57.714
|
332 |
+
- type: recall_at_100
|
333 |
+
value: 78.342
|
334 |
+
- type: recall_at_1000
|
335 |
+
value: 91.586
|
336 |
+
- type: recall_at_3
|
337 |
+
value: 45.255
|
338 |
+
- type: recall_at_5
|
339 |
+
value: 51.459999999999994
|
340 |
+
- task:
|
341 |
+
type: Retrieval
|
342 |
+
dataset:
|
343 |
+
type: BeIR/cqadupstack
|
344 |
+
name: MTEB CQADupstackGamingRetrieval
|
345 |
+
config: default
|
346 |
+
split: test
|
347 |
+
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
|
348 |
+
metrics:
|
349 |
+
- type: map_at_1
|
350 |
+
value: 38.732
|
351 |
+
- type: map_at_10
|
352 |
+
value: 51.03
|
353 |
+
- type: map_at_100
|
354 |
+
value: 52.078
|
355 |
+
- type: map_at_1000
|
356 |
+
value: 52.132
|
357 |
+
- type: map_at_3
|
358 |
+
value: 47.735
|
359 |
+
- type: map_at_5
|
360 |
+
value: 49.562
|
361 |
+
- type: ndcg_at_1
|
362 |
+
value: 44.074999999999996
|
363 |
+
- type: ndcg_at_10
|
364 |
+
value: 56.923
|
365 |
+
- type: ndcg_at_100
|
366 |
+
value: 61.004999999999995
|
367 |
+
- type: ndcg_at_1000
|
368 |
+
value: 62.12800000000001
|
369 |
+
- type: ndcg_at_3
|
370 |
+
value: 51.381
|
371 |
+
- type: ndcg_at_5
|
372 |
+
value: 54.027
|
373 |
+
- type: precision_at_1
|
374 |
+
value: 44.074999999999996
|
375 |
+
- type: precision_at_10
|
376 |
+
value: 9.21
|
377 |
+
- type: precision_at_100
|
378 |
+
value: 1.221
|
379 |
+
- type: precision_at_1000
|
380 |
+
value: 0.136
|
381 |
+
- type: precision_at_3
|
382 |
+
value: 23.009
|
383 |
+
- type: precision_at_5
|
384 |
+
value: 15.748999999999999
|
385 |
+
- type: recall_at_1
|
386 |
+
value: 38.732
|
387 |
+
- type: recall_at_10
|
388 |
+
value: 71.154
|
389 |
+
- type: recall_at_100
|
390 |
+
value: 88.676
|
391 |
+
- type: recall_at_1000
|
392 |
+
value: 96.718
|
393 |
+
- type: recall_at_3
|
394 |
+
value: 56.288000000000004
|
395 |
+
- type: recall_at_5
|
396 |
+
value: 62.792
|
397 |
+
- task:
|
398 |
+
type: Retrieval
|
399 |
+
dataset:
|
400 |
+
type: BeIR/cqadupstack
|
401 |
+
name: MTEB CQADupstackGisRetrieval
|
402 |
+
config: default
|
403 |
+
split: test
|
404 |
+
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
|
405 |
+
metrics:
|
406 |
+
- type: map_at_1
|
407 |
+
value: 26.837
|
408 |
+
- type: map_at_10
|
409 |
+
value: 35.959
|
410 |
+
- type: map_at_100
|
411 |
+
value: 37.172
|
412 |
+
- type: map_at_1000
|
413 |
+
value: 37.241
|
414 |
+
- type: map_at_3
|
415 |
+
value: 33.027
|
416 |
+
- type: map_at_5
|
417 |
+
value: 34.699000000000005
|
418 |
+
- type: ndcg_at_1
|
419 |
+
value: 29.378999999999998
|
420 |
+
- type: ndcg_at_10
|
421 |
+
value: 41.31
|
422 |
+
- type: ndcg_at_100
|
423 |
+
value: 47.058
|
424 |
+
- type: ndcg_at_1000
|
425 |
+
value: 48.777
|
426 |
+
- type: ndcg_at_3
|
427 |
+
value: 35.564
|
428 |
+
- type: ndcg_at_5
|
429 |
+
value: 38.384
|
430 |
+
- type: precision_at_1
|
431 |
+
value: 29.378999999999998
|
432 |
+
- type: precision_at_10
|
433 |
+
value: 6.361999999999999
|
434 |
+
- type: precision_at_100
|
435 |
+
value: 0.98
|
436 |
+
- type: precision_at_1000
|
437 |
+
value: 0.117
|
438 |
+
- type: precision_at_3
|
439 |
+
value: 15.028
|
440 |
+
- type: precision_at_5
|
441 |
+
value: 10.667
|
442 |
+
- type: recall_at_1
|
443 |
+
value: 26.837
|
444 |
+
- type: recall_at_10
|
445 |
+
value: 55.667
|
446 |
+
- type: recall_at_100
|
447 |
+
value: 81.843
|
448 |
+
- type: recall_at_1000
|
449 |
+
value: 94.707
|
450 |
+
- type: recall_at_3
|
451 |
+
value: 40.049
|
452 |
+
- type: recall_at_5
|
453 |
+
value: 46.92
|
454 |
+
- task:
|
455 |
+
type: Retrieval
|
456 |
+
dataset:
|
457 |
+
type: BeIR/cqadupstack
|
458 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
459 |
+
config: default
|
460 |
+
split: test
|
461 |
+
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
|
462 |
+
metrics:
|
463 |
+
- type: map_at_1
|
464 |
+
value: 15.142
|
465 |
+
- type: map_at_10
|
466 |
+
value: 23.727999999999998
|
467 |
+
- type: map_at_100
|
468 |
+
value: 25.137999999999998
|
469 |
+
- type: map_at_1000
|
470 |
+
value: 25.256
|
471 |
+
- type: map_at_3
|
472 |
+
value: 20.673
|
473 |
+
- type: map_at_5
|
474 |
+
value: 22.325999999999997
|
475 |
+
- type: ndcg_at_1
|
476 |
+
value: 18.407999999999998
|
477 |
+
- type: ndcg_at_10
|
478 |
+
value: 29.286
|
479 |
+
- type: ndcg_at_100
|
480 |
+
value: 35.753
|
481 |
+
- type: ndcg_at_1000
|
482 |
+
value: 38.541
|
483 |
+
- type: ndcg_at_3
|
484 |
+
value: 23.599
|
485 |
+
- type: ndcg_at_5
|
486 |
+
value: 26.262
|
487 |
+
- type: precision_at_1
|
488 |
+
value: 18.407999999999998
|
489 |
+
- type: precision_at_10
|
490 |
+
value: 5.697
|
491 |
+
- type: precision_at_100
|
492 |
+
value: 1.034
|
493 |
+
- type: precision_at_1000
|
494 |
+
value: 0.14100000000000001
|
495 |
+
- type: precision_at_3
|
496 |
+
value: 11.567
|
497 |
+
- type: precision_at_5
|
498 |
+
value: 8.781
|
499 |
+
- type: recall_at_1
|
500 |
+
value: 15.142
|
501 |
+
- type: recall_at_10
|
502 |
+
value: 42.476
|
503 |
+
- type: recall_at_100
|
504 |
+
value: 70.22699999999999
|
505 |
+
- type: recall_at_1000
|
506 |
+
value: 90.02799999999999
|
507 |
+
- type: recall_at_3
|
508 |
+
value: 27.056
|
509 |
+
- type: recall_at_5
|
510 |
+
value: 33.663
|
511 |
+
- task:
|
512 |
+
type: Retrieval
|
513 |
+
dataset:
|
514 |
+
type: BeIR/cqadupstack
|
515 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
516 |
+
config: default
|
517 |
+
split: test
|
518 |
+
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
|
519 |
+
metrics:
|
520 |
+
- type: map_at_1
|
521 |
+
value: 29.142000000000003
|
522 |
+
- type: map_at_10
|
523 |
+
value: 40.735
|
524 |
+
- type: map_at_100
|
525 |
+
value: 42.155
|
526 |
+
- type: map_at_1000
|
527 |
+
value: 42.27
|
528 |
+
- type: map_at_3
|
529 |
+
value: 37.491
|
530 |
+
- type: map_at_5
|
531 |
+
value: 39.475
|
532 |
+
- type: ndcg_at_1
|
533 |
+
value: 35.515
|
534 |
+
- type: ndcg_at_10
|
535 |
+
value: 46.982
|
536 |
+
- type: ndcg_at_100
|
537 |
+
value: 52.913
|
538 |
+
- type: ndcg_at_1000
|
539 |
+
value: 54.759
|
540 |
+
- type: ndcg_at_3
|
541 |
+
value: 42.164
|
542 |
+
- type: ndcg_at_5
|
543 |
+
value: 44.674
|
544 |
+
- type: precision_at_1
|
545 |
+
value: 35.515
|
546 |
+
- type: precision_at_10
|
547 |
+
value: 8.624
|
548 |
+
- type: precision_at_100
|
549 |
+
value: 1.377
|
550 |
+
- type: precision_at_1000
|
551 |
+
value: 0.173
|
552 |
+
- type: precision_at_3
|
553 |
+
value: 20.468
|
554 |
+
- type: precision_at_5
|
555 |
+
value: 14.649000000000001
|
556 |
+
- type: recall_at_1
|
557 |
+
value: 29.142000000000003
|
558 |
+
- type: recall_at_10
|
559 |
+
value: 59.693
|
560 |
+
- type: recall_at_100
|
561 |
+
value: 84.84899999999999
|
562 |
+
- type: recall_at_1000
|
563 |
+
value: 96.451
|
564 |
+
- type: recall_at_3
|
565 |
+
value: 46.086
|
566 |
+
- type: recall_at_5
|
567 |
+
value: 52.556000000000004
|
568 |
+
- task:
|
569 |
+
type: Retrieval
|
570 |
+
dataset:
|
571 |
+
type: BeIR/cqadupstack
|
572 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
573 |
+
config: default
|
574 |
+
split: test
|
575 |
+
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
|
576 |
+
metrics:
|
577 |
+
- type: map_at_1
|
578 |
+
value: 22.081999999999997
|
579 |
+
- type: map_at_10
|
580 |
+
value: 32.74
|
581 |
+
- type: map_at_100
|
582 |
+
value: 34.108
|
583 |
+
- type: map_at_1000
|
584 |
+
value: 34.233000000000004
|
585 |
+
- type: map_at_3
|
586 |
+
value: 29.282999999999998
|
587 |
+
- type: map_at_5
|
588 |
+
value: 31.127
|
589 |
+
- type: ndcg_at_1
|
590 |
+
value: 26.712000000000003
|
591 |
+
- type: ndcg_at_10
|
592 |
+
value: 38.968
|
593 |
+
- type: ndcg_at_100
|
594 |
+
value: 44.64
|
595 |
+
- type: ndcg_at_1000
|
596 |
+
value: 47.193000000000005
|
597 |
+
- type: ndcg_at_3
|
598 |
+
value: 33.311
|
599 |
+
- type: ndcg_at_5
|
600 |
+
value: 35.76
|
601 |
+
- type: precision_at_1
|
602 |
+
value: 26.712000000000003
|
603 |
+
- type: precision_at_10
|
604 |
+
value: 7.534000000000001
|
605 |
+
- type: precision_at_100
|
606 |
+
value: 1.2149999999999999
|
607 |
+
- type: precision_at_1000
|
608 |
+
value: 0.163
|
609 |
+
- type: precision_at_3
|
610 |
+
value: 16.476
|
611 |
+
- type: precision_at_5
|
612 |
+
value: 12.009
|
613 |
+
- type: recall_at_1
|
614 |
+
value: 22.081999999999997
|
615 |
+
- type: recall_at_10
|
616 |
+
value: 52.859
|
617 |
+
- type: recall_at_100
|
618 |
+
value: 76.812
|
619 |
+
- type: recall_at_1000
|
620 |
+
value: 94.248
|
621 |
+
- type: recall_at_3
|
622 |
+
value: 36.964999999999996
|
623 |
+
- type: recall_at_5
|
624 |
+
value: 43.338
|
625 |
+
- task:
|
626 |
+
type: Retrieval
|
627 |
+
dataset:
|
628 |
+
type: BeIR/cqadupstack
|
629 |
+
name: MTEB CQADupstackRetrieval
|
630 |
+
config: default
|
631 |
+
split: test
|
632 |
+
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
|
633 |
+
metrics:
|
634 |
+
- type: map_at_1
|
635 |
+
value: 25.825750000000003
|
636 |
+
- type: map_at_10
|
637 |
+
value: 35.614666666666665
|
638 |
+
- type: map_at_100
|
639 |
+
value: 36.952416666666664
|
640 |
+
- type: map_at_1000
|
641 |
+
value: 37.07433333333334
|
642 |
+
- type: map_at_3
|
643 |
+
value: 32.519916666666674
|
644 |
+
- type: map_at_5
|
645 |
+
value: 34.22966666666667
|
646 |
+
- type: ndcg_at_1
|
647 |
+
value: 30.616416666666662
|
648 |
+
- type: ndcg_at_10
|
649 |
+
value: 41.32475
|
650 |
+
- type: ndcg_at_100
|
651 |
+
value: 46.907
|
652 |
+
- type: ndcg_at_1000
|
653 |
+
value: 49.12475
|
654 |
+
- type: ndcg_at_3
|
655 |
+
value: 36.1415
|
656 |
+
- type: ndcg_at_5
|
657 |
+
value: 38.54916666666666
|
658 |
+
- type: precision_at_1
|
659 |
+
value: 30.616416666666662
|
660 |
+
- type: precision_at_10
|
661 |
+
value: 7.427166666666666
|
662 |
+
- type: precision_at_100
|
663 |
+
value: 1.2174166666666666
|
664 |
+
- type: precision_at_1000
|
665 |
+
value: 0.16066666666666665
|
666 |
+
- type: precision_at_3
|
667 |
+
value: 16.849083333333333
|
668 |
+
- type: precision_at_5
|
669 |
+
value: 12.1105
|
670 |
+
- type: recall_at_1
|
671 |
+
value: 25.825750000000003
|
672 |
+
- type: recall_at_10
|
673 |
+
value: 53.95283333333333
|
674 |
+
- type: recall_at_100
|
675 |
+
value: 78.408
|
676 |
+
- type: recall_at_1000
|
677 |
+
value: 93.60841666666666
|
678 |
+
- type: recall_at_3
|
679 |
+
value: 39.51116666666667
|
680 |
+
- type: recall_at_5
|
681 |
+
value: 45.67041666666667
|
682 |
+
- task:
|
683 |
+
type: Retrieval
|
684 |
+
dataset:
|
685 |
+
type: BeIR/cqadupstack
|
686 |
+
name: MTEB CQADupstackStatsRetrieval
|
687 |
+
config: default
|
688 |
+
split: test
|
689 |
+
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
|
690 |
+
metrics:
|
691 |
+
- type: map_at_1
|
692 |
+
value: 23.147000000000002
|
693 |
+
- type: map_at_10
|
694 |
+
value: 30.867
|
695 |
+
- type: map_at_100
|
696 |
+
value: 31.961000000000002
|
697 |
+
- type: map_at_1000
|
698 |
+
value: 32.074999999999996
|
699 |
+
- type: map_at_3
|
700 |
+
value: 28.598000000000003
|
701 |
+
- type: map_at_5
|
702 |
+
value: 29.715000000000003
|
703 |
+
- type: ndcg_at_1
|
704 |
+
value: 26.074
|
705 |
+
- type: ndcg_at_10
|
706 |
+
value: 35.379
|
707 |
+
- type: ndcg_at_100
|
708 |
+
value: 40.668
|
709 |
+
- type: ndcg_at_1000
|
710 |
+
value: 43.271
|
711 |
+
- type: ndcg_at_3
|
712 |
+
value: 31.291000000000004
|
713 |
+
- type: ndcg_at_5
|
714 |
+
value: 32.828
|
715 |
+
- type: precision_at_1
|
716 |
+
value: 26.074
|
717 |
+
- type: precision_at_10
|
718 |
+
value: 5.782
|
719 |
+
- type: precision_at_100
|
720 |
+
value: 0.9159999999999999
|
721 |
+
- type: precision_at_1000
|
722 |
+
value: 0.121
|
723 |
+
- type: precision_at_3
|
724 |
+
value: 13.905999999999999
|
725 |
+
- type: precision_at_5
|
726 |
+
value: 9.508999999999999
|
727 |
+
- type: recall_at_1
|
728 |
+
value: 23.147000000000002
|
729 |
+
- type: recall_at_10
|
730 |
+
value: 46.308
|
731 |
+
- type: recall_at_100
|
732 |
+
value: 70.529
|
733 |
+
- type: recall_at_1000
|
734 |
+
value: 89.53
|
735 |
+
- type: recall_at_3
|
736 |
+
value: 34.504000000000005
|
737 |
+
- type: recall_at_5
|
738 |
+
value: 38.472
|
739 |
+
- task:
|
740 |
+
type: Retrieval
|
741 |
+
dataset:
|
742 |
+
type: BeIR/cqadupstack
|
743 |
+
name: MTEB CQADupstackTexRetrieval
|
744 |
+
config: default
|
745 |
+
split: test
|
746 |
+
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
|
747 |
+
metrics:
|
748 |
+
- type: map_at_1
|
749 |
+
value: 17.573
|
750 |
+
- type: map_at_10
|
751 |
+
value: 25.480999999999998
|
752 |
+
- type: map_at_100
|
753 |
+
value: 26.740000000000002
|
754 |
+
- type: map_at_1000
|
755 |
+
value: 26.881
|
756 |
+
- type: map_at_3
|
757 |
+
value: 22.962
|
758 |
+
- type: map_at_5
|
759 |
+
value: 24.366
|
760 |
+
- type: ndcg_at_1
|
761 |
+
value: 21.783
|
762 |
+
- type: ndcg_at_10
|
763 |
+
value: 30.519000000000002
|
764 |
+
- type: ndcg_at_100
|
765 |
+
value: 36.449
|
766 |
+
- type: ndcg_at_1000
|
767 |
+
value: 39.476
|
768 |
+
- type: ndcg_at_3
|
769 |
+
value: 26.104
|
770 |
+
- type: ndcg_at_5
|
771 |
+
value: 28.142
|
772 |
+
- type: precision_at_1
|
773 |
+
value: 21.783
|
774 |
+
- type: precision_at_10
|
775 |
+
value: 5.716
|
776 |
+
- type: precision_at_100
|
777 |
+
value: 1.036
|
778 |
+
- type: precision_at_1000
|
779 |
+
value: 0.149
|
780 |
+
- type: precision_at_3
|
781 |
+
value: 12.629000000000001
|
782 |
+
- type: precision_at_5
|
783 |
+
value: 9.188
|
784 |
+
- type: recall_at_1
|
785 |
+
value: 17.573
|
786 |
+
- type: recall_at_10
|
787 |
+
value: 41.565999999999995
|
788 |
+
- type: recall_at_100
|
789 |
+
value: 68.31099999999999
|
790 |
+
- type: recall_at_1000
|
791 |
+
value: 89.66
|
792 |
+
- type: recall_at_3
|
793 |
+
value: 28.998
|
794 |
+
- type: recall_at_5
|
795 |
+
value: 34.409
|
796 |
+
- task:
|
797 |
+
type: Retrieval
|
798 |
+
dataset:
|
799 |
+
type: BeIR/cqadupstack
|
800 |
+
name: MTEB CQADupstackUnixRetrieval
|
801 |
+
config: default
|
802 |
+
split: test
|
803 |
+
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
|
804 |
+
metrics:
|
805 |
+
- type: map_at_1
|
806 |
+
value: 25.393
|
807 |
+
- type: map_at_10
|
808 |
+
value: 35.408
|
809 |
+
- type: map_at_100
|
810 |
+
value: 36.765
|
811 |
+
- type: map_at_1000
|
812 |
+
value: 36.870000000000005
|
813 |
+
- type: map_at_3
|
814 |
+
value: 31.858999999999998
|
815 |
+
- type: map_at_5
|
816 |
+
value: 34.088
|
817 |
+
- type: ndcg_at_1
|
818 |
+
value: 30.409999999999997
|
819 |
+
- type: ndcg_at_10
|
820 |
+
value: 41.31
|
821 |
+
- type: ndcg_at_100
|
822 |
+
value: 47.317
|
823 |
+
- type: ndcg_at_1000
|
824 |
+
value: 49.451
|
825 |
+
- type: ndcg_at_3
|
826 |
+
value: 35.156
|
827 |
+
- type: ndcg_at_5
|
828 |
+
value: 38.550000000000004
|
829 |
+
- type: precision_at_1
|
830 |
+
value: 30.409999999999997
|
831 |
+
- type: precision_at_10
|
832 |
+
value: 7.285
|
833 |
+
- type: precision_at_100
|
834 |
+
value: 1.16
|
835 |
+
- type: precision_at_1000
|
836 |
+
value: 0.145
|
837 |
+
- type: precision_at_3
|
838 |
+
value: 16.2
|
839 |
+
- type: precision_at_5
|
840 |
+
value: 12.015
|
841 |
+
- type: recall_at_1
|
842 |
+
value: 25.393
|
843 |
+
- type: recall_at_10
|
844 |
+
value: 54.955
|
845 |
+
- type: recall_at_100
|
846 |
+
value: 81.074
|
847 |
+
- type: recall_at_1000
|
848 |
+
value: 95.517
|
849 |
+
- type: recall_at_3
|
850 |
+
value: 38.646
|
851 |
+
- type: recall_at_5
|
852 |
+
value: 47.155
|
853 |
+
- task:
|
854 |
+
type: Retrieval
|
855 |
+
dataset:
|
856 |
+
type: BeIR/cqadupstack
|
857 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
858 |
+
config: default
|
859 |
+
split: test
|
860 |
+
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
|
861 |
+
metrics:
|
862 |
+
- type: map_at_1
|
863 |
+
value: 25.219
|
864 |
+
- type: map_at_10
|
865 |
+
value: 34.317
|
866 |
+
- type: map_at_100
|
867 |
+
value: 36.099
|
868 |
+
- type: map_at_1000
|
869 |
+
value: 36.339
|
870 |
+
- type: map_at_3
|
871 |
+
value: 31.118000000000002
|
872 |
+
- type: map_at_5
|
873 |
+
value: 32.759
|
874 |
+
- type: ndcg_at_1
|
875 |
+
value: 30.04
|
876 |
+
- type: ndcg_at_10
|
877 |
+
value: 40.467
|
878 |
+
- type: ndcg_at_100
|
879 |
+
value: 46.918
|
880 |
+
- type: ndcg_at_1000
|
881 |
+
value: 49.263
|
882 |
+
- type: ndcg_at_3
|
883 |
+
value: 34.976
|
884 |
+
- type: ndcg_at_5
|
885 |
+
value: 37.345
|
886 |
+
- type: precision_at_1
|
887 |
+
value: 30.04
|
888 |
+
- type: precision_at_10
|
889 |
+
value: 7.786999999999999
|
890 |
+
- type: precision_at_100
|
891 |
+
value: 1.638
|
892 |
+
- type: precision_at_1000
|
893 |
+
value: 0.249
|
894 |
+
- type: precision_at_3
|
895 |
+
value: 16.206
|
896 |
+
- type: precision_at_5
|
897 |
+
value: 11.976
|
898 |
+
- type: recall_at_1
|
899 |
+
value: 25.219
|
900 |
+
- type: recall_at_10
|
901 |
+
value: 52.443
|
902 |
+
- type: recall_at_100
|
903 |
+
value: 80.523
|
904 |
+
- type: recall_at_1000
|
905 |
+
value: 95.025
|
906 |
+
- type: recall_at_3
|
907 |
+
value: 37.216
|
908 |
+
- type: recall_at_5
|
909 |
+
value: 43.086999999999996
|
910 |
+
- task:
|
911 |
+
type: Retrieval
|
912 |
+
dataset:
|
913 |
+
type: BeIR/cqadupstack
|
914 |
+
name: MTEB CQADupstackWordpressRetrieval
|
915 |
+
config: default
|
916 |
+
split: test
|
917 |
+
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
|
918 |
+
metrics:
|
919 |
+
- type: map_at_1
|
920 |
+
value: 20.801
|
921 |
+
- type: map_at_10
|
922 |
+
value: 28.371000000000002
|
923 |
+
- type: map_at_100
|
924 |
+
value: 29.483999999999998
|
925 |
+
- type: map_at_1000
|
926 |
+
value: 29.602
|
927 |
+
- type: map_at_3
|
928 |
+
value: 25.790999999999997
|
929 |
+
- type: map_at_5
|
930 |
+
value: 27.025
|
931 |
+
- type: ndcg_at_1
|
932 |
+
value: 22.736
|
933 |
+
- type: ndcg_at_10
|
934 |
+
value: 33.147999999999996
|
935 |
+
- type: ndcg_at_100
|
936 |
+
value: 38.711
|
937 |
+
- type: ndcg_at_1000
|
938 |
+
value: 41.498000000000005
|
939 |
+
- type: ndcg_at_3
|
940 |
+
value: 28.016000000000002
|
941 |
+
- type: ndcg_at_5
|
942 |
+
value: 30.011
|
943 |
+
- type: precision_at_1
|
944 |
+
value: 22.736
|
945 |
+
- type: precision_at_10
|
946 |
+
value: 5.379
|
947 |
+
- type: precision_at_100
|
948 |
+
value: 0.876
|
949 |
+
- type: precision_at_1000
|
950 |
+
value: 0.125
|
951 |
+
- type: precision_at_3
|
952 |
+
value: 11.953
|
953 |
+
- type: precision_at_5
|
954 |
+
value: 8.466
|
955 |
+
- type: recall_at_1
|
956 |
+
value: 20.801
|
957 |
+
- type: recall_at_10
|
958 |
+
value: 46.134
|
959 |
+
- type: recall_at_100
|
960 |
+
value: 72.151
|
961 |
+
- type: recall_at_1000
|
962 |
+
value: 92.648
|
963 |
+
- type: recall_at_3
|
964 |
+
value: 32.061
|
965 |
+
- type: recall_at_5
|
966 |
+
value: 36.781000000000006
|
967 |
+
- task:
|
968 |
+
type: Retrieval
|
969 |
+
dataset:
|
970 |
+
type: climate-fever
|
971 |
+
name: MTEB ClimateFEVER
|
972 |
+
config: default
|
973 |
+
split: test
|
974 |
+
revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce
|
975 |
+
metrics:
|
976 |
+
- type: map_at_1
|
977 |
+
value: 7.9159999999999995
|
978 |
+
- type: map_at_10
|
979 |
+
value: 13.769
|
980 |
+
- type: map_at_100
|
981 |
+
value: 15.447
|
982 |
+
- type: map_at_1000
|
983 |
+
value: 15.634
|
984 |
+
- type: map_at_3
|
985 |
+
value: 11.234
|
986 |
+
- type: map_at_5
|
987 |
+
value: 12.581999999999999
|
988 |
+
- type: ndcg_at_1
|
989 |
+
value: 17.72
|
990 |
+
- type: ndcg_at_10
|
991 |
+
value: 20.272000000000002
|
992 |
+
- type: ndcg_at_100
|
993 |
+
value: 27.748
|
994 |
+
- type: ndcg_at_1000
|
995 |
+
value: 31.457
|
996 |
+
- type: ndcg_at_3
|
997 |
+
value: 15.742
|
998 |
+
- type: ndcg_at_5
|
999 |
+
value: 17.494
|
1000 |
+
- type: precision_at_1
|
1001 |
+
value: 17.72
|
1002 |
+
- type: precision_at_10
|
1003 |
+
value: 6.554
|
1004 |
+
- type: precision_at_100
|
1005 |
+
value: 1.438
|
1006 |
+
- type: precision_at_1000
|
1007 |
+
value: 0.212
|
1008 |
+
- type: precision_at_3
|
1009 |
+
value: 11.705
|
1010 |
+
- type: precision_at_5
|
1011 |
+
value: 9.511
|
1012 |
+
- type: recall_at_1
|
1013 |
+
value: 7.9159999999999995
|
1014 |
+
- type: recall_at_10
|
1015 |
+
value: 25.389
|
1016 |
+
- type: recall_at_100
|
1017 |
+
value: 52.042
|
1018 |
+
- type: recall_at_1000
|
1019 |
+
value: 73.166
|
1020 |
+
- type: recall_at_3
|
1021 |
+
value: 14.585999999999999
|
1022 |
+
- type: recall_at_5
|
1023 |
+
value: 19.145
|
1024 |
+
- task:
|
1025 |
+
type: Retrieval
|
1026 |
+
dataset:
|
1027 |
+
type: dbpedia-entity
|
1028 |
+
name: MTEB DBPedia
|
1029 |
+
config: default
|
1030 |
+
split: test
|
1031 |
+
revision: f097057d03ed98220bc7309ddb10b71a54d667d6
|
1032 |
+
metrics:
|
1033 |
+
- type: map_at_1
|
1034 |
+
value: 7.172000000000001
|
1035 |
+
- type: map_at_10
|
1036 |
+
value: 14.507
|
1037 |
+
- type: map_at_100
|
1038 |
+
value: 20.094
|
1039 |
+
- type: map_at_1000
|
1040 |
+
value: 21.357
|
1041 |
+
- type: map_at_3
|
1042 |
+
value: 10.45
|
1043 |
+
- type: map_at_5
|
1044 |
+
value: 12.135
|
1045 |
+
- type: ndcg_at_1
|
1046 |
+
value: 42.375
|
1047 |
+
- type: ndcg_at_10
|
1048 |
+
value: 32.33
|
1049 |
+
- type: ndcg_at_100
|
1050 |
+
value: 36.370000000000005
|
1051 |
+
- type: ndcg_at_1000
|
1052 |
+
value: 43.596000000000004
|
1053 |
+
- type: ndcg_at_3
|
1054 |
+
value: 35.006
|
1055 |
+
- type: ndcg_at_5
|
1056 |
+
value: 33.35
|
1057 |
+
- type: precision_at_1
|
1058 |
+
value: 54.50000000000001
|
1059 |
+
- type: precision_at_10
|
1060 |
+
value: 26.424999999999997
|
1061 |
+
- type: precision_at_100
|
1062 |
+
value: 8.24
|
1063 |
+
- type: precision_at_1000
|
1064 |
+
value: 1.765
|
1065 |
+
- type: precision_at_3
|
1066 |
+
value: 38.667
|
1067 |
+
- type: precision_at_5
|
1068 |
+
value: 33.0
|
1069 |
+
- type: recall_at_1
|
1070 |
+
value: 7.172000000000001
|
1071 |
+
- type: recall_at_10
|
1072 |
+
value: 19.922
|
1073 |
+
- type: recall_at_100
|
1074 |
+
value: 43.273
|
1075 |
+
- type: recall_at_1000
|
1076 |
+
value: 67.157
|
1077 |
+
- type: recall_at_3
|
1078 |
+
value: 11.521
|
1079 |
+
- type: recall_at_5
|
1080 |
+
value: 14.667
|
1081 |
+
- task:
|
1082 |
+
type: Classification
|
1083 |
+
dataset:
|
1084 |
+
type: mteb/emotion
|
1085 |
+
name: MTEB EmotionClassification
|
1086 |
+
config: default
|
1087 |
+
split: test
|
1088 |
+
revision: 829147f8f75a25f005913200eb5ed41fae320aa1
|
1089 |
+
metrics:
|
1090 |
+
- type: accuracy
|
1091 |
+
value: 38.43
|
1092 |
+
- type: f1
|
1093 |
+
value: 35.26220518237799
|
1094 |
+
- task:
|
1095 |
+
type: Retrieval
|
1096 |
+
dataset:
|
1097 |
+
type: fever
|
1098 |
+
name: MTEB FEVER
|
1099 |
+
config: default
|
1100 |
+
split: test
|
1101 |
+
revision: 1429cf27e393599b8b359b9b72c666f96b2525f9
|
1102 |
+
metrics:
|
1103 |
+
- type: map_at_1
|
1104 |
+
value: 34.076
|
1105 |
+
- type: map_at_10
|
1106 |
+
value: 45.482
|
1107 |
+
- type: map_at_100
|
1108 |
+
value: 46.269
|
1109 |
+
- type: map_at_1000
|
1110 |
+
value: 46.309
|
1111 |
+
- type: map_at_3
|
1112 |
+
value: 42.614000000000004
|
1113 |
+
- type: map_at_5
|
1114 |
+
value: 44.314
|
1115 |
+
- type: ndcg_at_1
|
1116 |
+
value: 36.529
|
1117 |
+
- type: ndcg_at_10
|
1118 |
+
value: 51.934000000000005
|
1119 |
+
- type: ndcg_at_100
|
1120 |
+
value: 55.525000000000006
|
1121 |
+
- type: ndcg_at_1000
|
1122 |
+
value: 56.568
|
1123 |
+
- type: ndcg_at_3
|
1124 |
+
value: 46.169
|
1125 |
+
- type: ndcg_at_5
|
1126 |
+
value: 49.163000000000004
|
1127 |
+
- type: precision_at_1
|
1128 |
+
value: 36.529
|
1129 |
+
- type: precision_at_10
|
1130 |
+
value: 7.5649999999999995
|
1131 |
+
- type: precision_at_100
|
1132 |
+
value: 0.947
|
1133 |
+
- type: precision_at_1000
|
1134 |
+
value: 0.105
|
1135 |
+
- type: precision_at_3
|
1136 |
+
value: 19.326999999999998
|
1137 |
+
- type: precision_at_5
|
1138 |
+
value: 13.239999999999998
|
1139 |
+
- type: recall_at_1
|
1140 |
+
value: 34.076
|
1141 |
+
- type: recall_at_10
|
1142 |
+
value: 69.009
|
1143 |
+
- type: recall_at_100
|
1144 |
+
value: 85.047
|
1145 |
+
- type: recall_at_1000
|
1146 |
+
value: 92.962
|
1147 |
+
- type: recall_at_3
|
1148 |
+
value: 53.446000000000005
|
1149 |
+
- type: recall_at_5
|
1150 |
+
value: 60.622
|
1151 |
+
- task:
|
1152 |
+
type: Retrieval
|
1153 |
+
dataset:
|
1154 |
+
type: fiqa
|
1155 |
+
name: MTEB FiQA2018
|
1156 |
+
config: default
|
1157 |
+
split: test
|
1158 |
+
revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be
|
1159 |
+
metrics:
|
1160 |
+
- type: map_at_1
|
1161 |
+
value: 17.14
|
1162 |
+
- type: map_at_10
|
1163 |
+
value: 29.141000000000002
|
1164 |
+
- type: map_at_100
|
1165 |
+
value: 30.956
|
1166 |
+
- type: map_at_1000
|
1167 |
+
value: 31.159
|
1168 |
+
- type: map_at_3
|
1169 |
+
value: 25.188
|
1170 |
+
- type: map_at_5
|
1171 |
+
value: 27.506999999999998
|
1172 |
+
- type: ndcg_at_1
|
1173 |
+
value: 34.721999999999994
|
1174 |
+
- type: ndcg_at_10
|
1175 |
+
value: 36.867
|
1176 |
+
- type: ndcg_at_100
|
1177 |
+
value: 43.931
|
1178 |
+
- type: ndcg_at_1000
|
1179 |
+
value: 47.276
|
1180 |
+
- type: ndcg_at_3
|
1181 |
+
value: 33.18
|
1182 |
+
- type: ndcg_at_5
|
1183 |
+
value: 34.504000000000005
|
1184 |
+
- type: precision_at_1
|
1185 |
+
value: 34.721999999999994
|
1186 |
+
- type: precision_at_10
|
1187 |
+
value: 10.448
|
1188 |
+
- type: precision_at_100
|
1189 |
+
value: 1.778
|
1190 |
+
- type: precision_at_1000
|
1191 |
+
value: 0.23600000000000002
|
1192 |
+
- type: precision_at_3
|
1193 |
+
value: 22.377
|
1194 |
+
- type: precision_at_5
|
1195 |
+
value: 16.759
|
1196 |
+
- type: recall_at_1
|
1197 |
+
value: 17.14
|
1198 |
+
- type: recall_at_10
|
1199 |
+
value: 44.131
|
1200 |
+
- type: recall_at_100
|
1201 |
+
value: 70.60600000000001
|
1202 |
+
- type: recall_at_1000
|
1203 |
+
value: 90.672
|
1204 |
+
- type: recall_at_3
|
1205 |
+
value: 30.536
|
1206 |
+
- type: recall_at_5
|
1207 |
+
value: 36.706
|
1208 |
+
- task:
|
1209 |
+
type: Retrieval
|
1210 |
+
dataset:
|
1211 |
+
type: hotpotqa
|
1212 |
+
name: MTEB HotpotQA
|
1213 |
+
config: default
|
1214 |
+
split: test
|
1215 |
+
revision: 766870b35a1b9ca65e67a0d1913899973551fc6c
|
1216 |
+
metrics:
|
1217 |
+
- type: map_at_1
|
1218 |
+
value: 27.717999999999996
|
1219 |
+
- type: map_at_10
|
1220 |
+
value: 37.63
|
1221 |
+
- type: map_at_100
|
1222 |
+
value: 38.534
|
1223 |
+
- type: map_at_1000
|
1224 |
+
value: 38.619
|
1225 |
+
- type: map_at_3
|
1226 |
+
value: 35.197
|
1227 |
+
- type: map_at_5
|
1228 |
+
value: 36.592999999999996
|
1229 |
+
- type: ndcg_at_1
|
1230 |
+
value: 55.43599999999999
|
1231 |
+
- type: ndcg_at_10
|
1232 |
+
value: 46.513
|
1233 |
+
- type: ndcg_at_100
|
1234 |
+
value: 50.21
|
1235 |
+
- type: ndcg_at_1000
|
1236 |
+
value: 52.049
|
1237 |
+
- type: ndcg_at_3
|
1238 |
+
value: 42.333999999999996
|
1239 |
+
- type: ndcg_at_5
|
1240 |
+
value: 44.45
|
1241 |
+
- type: precision_at_1
|
1242 |
+
value: 55.43599999999999
|
1243 |
+
- type: precision_at_10
|
1244 |
+
value: 9.741
|
1245 |
+
- type: precision_at_100
|
1246 |
+
value: 1.2670000000000001
|
1247 |
+
- type: precision_at_1000
|
1248 |
+
value: 0.151
|
1249 |
+
- type: precision_at_3
|
1250 |
+
value: 26.194
|
1251 |
+
- type: precision_at_5
|
1252 |
+
value: 17.396
|
1253 |
+
- type: recall_at_1
|
1254 |
+
value: 27.717999999999996
|
1255 |
+
- type: recall_at_10
|
1256 |
+
value: 48.704
|
1257 |
+
- type: recall_at_100
|
1258 |
+
value: 63.363
|
1259 |
+
- type: recall_at_1000
|
1260 |
+
value: 75.564
|
1261 |
+
- type: recall_at_3
|
1262 |
+
value: 39.291
|
1263 |
+
- type: recall_at_5
|
1264 |
+
value: 43.491
|
1265 |
+
- task:
|
1266 |
+
type: Classification
|
1267 |
+
dataset:
|
1268 |
+
type: mteb/imdb
|
1269 |
+
name: MTEB ImdbClassification
|
1270 |
+
config: default
|
1271 |
+
split: test
|
1272 |
+
revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4
|
1273 |
+
metrics:
|
1274 |
+
- type: accuracy
|
1275 |
+
value: 60.6612
|
1276 |
+
- type: ap
|
1277 |
+
value: 56.73559487964456
|
1278 |
+
- type: f1
|
1279 |
+
value: 60.39970244353384
|
1280 |
+
- task:
|
1281 |
+
type: Retrieval
|
1282 |
+
dataset:
|
1283 |
+
type: msmarco
|
1284 |
+
name: MTEB MSMARCO
|
1285 |
+
config: default
|
1286 |
+
split: dev
|
1287 |
+
revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849
|
1288 |
+
metrics:
|
1289 |
+
- type: map_at_1
|
1290 |
+
value: 18.715
|
1291 |
+
- type: map_at_10
|
1292 |
+
value: 30.014999999999997
|
1293 |
+
- type: map_at_100
|
1294 |
+
value: 31.208999999999996
|
1295 |
+
- type: map_at_1000
|
1296 |
+
value: 31.269999999999996
|
1297 |
+
- type: map_at_3
|
1298 |
+
value: 26.299
|
1299 |
+
- type: map_at_5
|
1300 |
+
value: 28.408
|
1301 |
+
- type: ndcg_at_1
|
1302 |
+
value: 19.255
|
1303 |
+
- type: ndcg_at_10
|
1304 |
+
value: 36.542
|
1305 |
+
- type: ndcg_at_100
|
1306 |
+
value: 42.471
|
1307 |
+
- type: ndcg_at_1000
|
1308 |
+
value: 44.022
|
1309 |
+
- type: ndcg_at_3
|
1310 |
+
value: 28.921000000000003
|
1311 |
+
- type: ndcg_at_5
|
1312 |
+
value: 32.676
|
1313 |
+
- type: precision_at_1
|
1314 |
+
value: 19.255
|
1315 |
+
- type: precision_at_10
|
1316 |
+
value: 5.91
|
1317 |
+
- type: precision_at_100
|
1318 |
+
value: 0.8920000000000001
|
1319 |
+
- type: precision_at_1000
|
1320 |
+
value: 0.10200000000000001
|
1321 |
+
- type: precision_at_3
|
1322 |
+
value: 12.388
|
1323 |
+
- type: precision_at_5
|
1324 |
+
value: 9.33
|
1325 |
+
- type: recall_at_1
|
1326 |
+
value: 18.715
|
1327 |
+
- type: recall_at_10
|
1328 |
+
value: 56.76
|
1329 |
+
- type: recall_at_100
|
1330 |
+
value: 84.481
|
1331 |
+
- type: recall_at_1000
|
1332 |
+
value: 96.44
|
1333 |
+
- type: recall_at_3
|
1334 |
+
value: 35.942
|
1335 |
+
- type: recall_at_5
|
1336 |
+
value: 44.926
|
1337 |
+
- task:
|
1338 |
+
type: Classification
|
1339 |
+
dataset:
|
1340 |
+
type: mteb/mtop_domain
|
1341 |
+
name: MTEB MTOPDomainClassification (en)
|
1342 |
+
config: en
|
1343 |
+
split: test
|
1344 |
+
revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
|
1345 |
+
metrics:
|
1346 |
+
- type: accuracy
|
1347 |
+
value: 91.56178750569997
|
1348 |
+
- type: f1
|
1349 |
+
value: 91.02309252160694
|
1350 |
+
- task:
|
1351 |
+
type: Classification
|
1352 |
+
dataset:
|
1353 |
+
type: mteb/mtop_intent
|
1354 |
+
name: MTEB MTOPIntentClassification (en)
|
1355 |
+
config: en
|
1356 |
+
split: test
|
1357 |
+
revision: 6299947a7777084cc2d4b64235bf7190381ce755
|
1358 |
+
metrics:
|
1359 |
+
- type: accuracy
|
1360 |
+
value: 62.18194254445966
|
1361 |
+
- type: f1
|
1362 |
+
value: 43.090624769020444
|
1363 |
+
- task:
|
1364 |
+
type: Classification
|
1365 |
+
dataset:
|
1366 |
+
type: mteb/amazon_massive_intent
|
1367 |
+
name: MTEB MassiveIntentClassification (en)
|
1368 |
+
config: en
|
1369 |
+
split: test
|
1370 |
+
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
|
1371 |
+
metrics:
|
1372 |
+
- type: accuracy
|
1373 |
+
value: 67.404169468729
|
1374 |
+
- type: f1
|
1375 |
+
value: 64.82901615433794
|
1376 |
+
- task:
|
1377 |
+
type: Classification
|
1378 |
+
dataset:
|
1379 |
+
type: mteb/amazon_massive_scenario
|
1380 |
+
name: MTEB MassiveScenarioClassification (en)
|
1381 |
+
config: en
|
1382 |
+
split: test
|
1383 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1384 |
+
metrics:
|
1385 |
+
- type: accuracy
|
1386 |
+
value: 75.75655682582381
|
1387 |
+
- type: f1
|
1388 |
+
value: 74.93126114560368
|
1389 |
+
- task:
|
1390 |
+
type: Clustering
|
1391 |
+
dataset:
|
1392 |
+
type: mteb/medrxiv-clustering-p2p
|
1393 |
+
name: MTEB MedrxivClusteringP2P
|
1394 |
+
config: default
|
1395 |
+
split: test
|
1396 |
+
revision: dcefc037ef84348e49b0d29109e891c01067226b
|
1397 |
+
metrics:
|
1398 |
+
- type: v_measure
|
1399 |
+
value: 34.40873490143895
|
1400 |
+
- task:
|
1401 |
+
type: Clustering
|
1402 |
+
dataset:
|
1403 |
+
type: mteb/medrxiv-clustering-s2s
|
1404 |
+
name: MTEB MedrxivClusteringS2S
|
1405 |
+
config: default
|
1406 |
+
split: test
|
1407 |
+
revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc
|
1408 |
+
metrics:
|
1409 |
+
- type: v_measure
|
1410 |
+
value: 32.292207500530914
|
1411 |
+
- task:
|
1412 |
+
type: Reranking
|
1413 |
+
dataset:
|
1414 |
+
type: mteb/mind_small
|
1415 |
+
name: MTEB MindSmallReranking
|
1416 |
+
config: default
|
1417 |
+
split: test
|
1418 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1419 |
+
metrics:
|
1420 |
+
- type: map
|
1421 |
+
value: 30.798042020200267
|
1422 |
+
- type: mrr
|
1423 |
+
value: 31.803264263405513
|
1424 |
+
- task:
|
1425 |
+
type: Retrieval
|
1426 |
+
dataset:
|
1427 |
+
type: nfcorpus
|
1428 |
+
name: MTEB NFCorpus
|
1429 |
+
config: default
|
1430 |
+
split: test
|
1431 |
+
revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610
|
1432 |
+
metrics:
|
1433 |
+
- type: map_at_1
|
1434 |
+
value: 4.3229999999999995
|
1435 |
+
- type: map_at_10
|
1436 |
+
value: 11.048
|
1437 |
+
- type: map_at_100
|
1438 |
+
value: 14.244000000000002
|
1439 |
+
- type: map_at_1000
|
1440 |
+
value: 15.684000000000001
|
1441 |
+
- type: map_at_3
|
1442 |
+
value: 7.7219999999999995
|
1443 |
+
- type: map_at_5
|
1444 |
+
value: 9.231
|
1445 |
+
- type: ndcg_at_1
|
1446 |
+
value: 39.474
|
1447 |
+
- type: ndcg_at_10
|
1448 |
+
value: 31.594
|
1449 |
+
- type: ndcg_at_100
|
1450 |
+
value: 29.455
|
1451 |
+
- type: ndcg_at_1000
|
1452 |
+
value: 38.283
|
1453 |
+
- type: ndcg_at_3
|
1454 |
+
value: 36.355
|
1455 |
+
- type: ndcg_at_5
|
1456 |
+
value: 34.164
|
1457 |
+
- type: precision_at_1
|
1458 |
+
value: 41.486000000000004
|
1459 |
+
- type: precision_at_10
|
1460 |
+
value: 24.334
|
1461 |
+
- type: precision_at_100
|
1462 |
+
value: 7.981000000000001
|
1463 |
+
- type: precision_at_1000
|
1464 |
+
value: 2.096
|
1465 |
+
- type: precision_at_3
|
1466 |
+
value: 34.881
|
1467 |
+
- type: precision_at_5
|
1468 |
+
value: 30.279
|
1469 |
+
- type: recall_at_1
|
1470 |
+
value: 4.3229999999999995
|
1471 |
+
- type: recall_at_10
|
1472 |
+
value: 15.498999999999999
|
1473 |
+
- type: recall_at_100
|
1474 |
+
value: 31.151
|
1475 |
+
- type: recall_at_1000
|
1476 |
+
value: 63.211
|
1477 |
+
- type: recall_at_3
|
1478 |
+
value: 9.053
|
1479 |
+
- type: recall_at_5
|
1480 |
+
value: 11.959
|
1481 |
+
- task:
|
1482 |
+
type: Retrieval
|
1483 |
+
dataset:
|
1484 |
+
type: nq
|
1485 |
+
name: MTEB NQ
|
1486 |
+
config: default
|
1487 |
+
split: test
|
1488 |
+
revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c
|
1489 |
+
metrics:
|
1490 |
+
- type: map_at_1
|
1491 |
+
value: 22.644000000000002
|
1492 |
+
- type: map_at_10
|
1493 |
+
value: 36.335
|
1494 |
+
- type: map_at_100
|
1495 |
+
value: 37.687
|
1496 |
+
- type: map_at_1000
|
1497 |
+
value: 37.733
|
1498 |
+
- type: map_at_3
|
1499 |
+
value: 31.928
|
1500 |
+
- type: map_at_5
|
1501 |
+
value: 34.586
|
1502 |
+
- type: ndcg_at_1
|
1503 |
+
value: 25.607999999999997
|
1504 |
+
- type: ndcg_at_10
|
1505 |
+
value: 43.869
|
1506 |
+
- type: ndcg_at_100
|
1507 |
+
value: 49.730000000000004
|
1508 |
+
- type: ndcg_at_1000
|
1509 |
+
value: 50.749
|
1510 |
+
- type: ndcg_at_3
|
1511 |
+
value: 35.418
|
1512 |
+
- type: ndcg_at_5
|
1513 |
+
value: 39.961999999999996
|
1514 |
+
- type: precision_at_1
|
1515 |
+
value: 25.607999999999997
|
1516 |
+
- type: precision_at_10
|
1517 |
+
value: 7.697
|
1518 |
+
- type: precision_at_100
|
1519 |
+
value: 1.093
|
1520 |
+
- type: precision_at_1000
|
1521 |
+
value: 0.11900000000000001
|
1522 |
+
- type: precision_at_3
|
1523 |
+
value: 16.522000000000002
|
1524 |
+
- type: precision_at_5
|
1525 |
+
value: 12.486
|
1526 |
+
- type: recall_at_1
|
1527 |
+
value: 22.644000000000002
|
1528 |
+
- type: recall_at_10
|
1529 |
+
value: 64.711
|
1530 |
+
- type: recall_at_100
|
1531 |
+
value: 90.32900000000001
|
1532 |
+
- type: recall_at_1000
|
1533 |
+
value: 97.82
|
1534 |
+
- type: recall_at_3
|
1535 |
+
value: 42.754999999999995
|
1536 |
+
- type: recall_at_5
|
1537 |
+
value: 53.37
|
1538 |
+
- task:
|
1539 |
+
type: Retrieval
|
1540 |
+
dataset:
|
1541 |
+
type: quora
|
1542 |
+
name: MTEB QuoraRetrieval
|
1543 |
+
config: default
|
1544 |
+
split: test
|
1545 |
+
revision: 6205996560df11e3a3da9ab4f926788fc30a7db4
|
1546 |
+
metrics:
|
1547 |
+
- type: map_at_1
|
1548 |
+
value: 69.76
|
1549 |
+
- type: map_at_10
|
1550 |
+
value: 83.64200000000001
|
1551 |
+
- type: map_at_100
|
1552 |
+
value: 84.312
|
1553 |
+
- type: map_at_1000
|
1554 |
+
value: 84.329
|
1555 |
+
- type: map_at_3
|
1556 |
+
value: 80.537
|
1557 |
+
- type: map_at_5
|
1558 |
+
value: 82.494
|
1559 |
+
- type: ndcg_at_1
|
1560 |
+
value: 80.41
|
1561 |
+
- type: ndcg_at_10
|
1562 |
+
value: 87.556
|
1563 |
+
- type: ndcg_at_100
|
1564 |
+
value: 88.847
|
1565 |
+
- type: ndcg_at_1000
|
1566 |
+
value: 88.959
|
1567 |
+
- type: ndcg_at_3
|
1568 |
+
value: 84.466
|
1569 |
+
- type: ndcg_at_5
|
1570 |
+
value: 86.193
|
1571 |
+
- type: precision_at_1
|
1572 |
+
value: 80.41
|
1573 |
+
- type: precision_at_10
|
1574 |
+
value: 13.374
|
1575 |
+
- type: precision_at_100
|
1576 |
+
value: 1.529
|
1577 |
+
- type: precision_at_1000
|
1578 |
+
value: 0.157
|
1579 |
+
- type: precision_at_3
|
1580 |
+
value: 36.953
|
1581 |
+
- type: precision_at_5
|
1582 |
+
value: 24.401999999999997
|
1583 |
+
- type: recall_at_1
|
1584 |
+
value: 69.76
|
1585 |
+
- type: recall_at_10
|
1586 |
+
value: 95.029
|
1587 |
+
- type: recall_at_100
|
1588 |
+
value: 99.44
|
1589 |
+
- type: recall_at_1000
|
1590 |
+
value: 99.979
|
1591 |
+
- type: recall_at_3
|
1592 |
+
value: 86.215
|
1593 |
+
- type: recall_at_5
|
1594 |
+
value: 91.03999999999999
|
1595 |
+
- task:
|
1596 |
+
type: Clustering
|
1597 |
+
dataset:
|
1598 |
+
type: mteb/reddit-clustering
|
1599 |
+
name: MTEB RedditClustering
|
1600 |
+
config: default
|
1601 |
+
split: test
|
1602 |
+
revision: b2805658ae38990172679479369a78b86de8c390
|
1603 |
+
metrics:
|
1604 |
+
- type: v_measure
|
1605 |
+
value: 50.66969274980475
|
1606 |
+
- task:
|
1607 |
+
type: Clustering
|
1608 |
+
dataset:
|
1609 |
+
type: mteb/reddit-clustering-p2p
|
1610 |
+
name: MTEB RedditClusteringP2P
|
1611 |
+
config: default
|
1612 |
+
split: test
|
1613 |
+
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
|
1614 |
+
metrics:
|
1615 |
+
- type: v_measure
|
1616 |
+
value: 54.15176409632201
|
1617 |
+
- task:
|
1618 |
+
type: Retrieval
|
1619 |
+
dataset:
|
1620 |
+
type: scidocs
|
1621 |
+
name: MTEB SCIDOCS
|
1622 |
+
config: default
|
1623 |
+
split: test
|
1624 |
+
revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5
|
1625 |
+
metrics:
|
1626 |
+
- type: map_at_1
|
1627 |
+
value: 4.853
|
1628 |
+
- type: map_at_10
|
1629 |
+
value: 12.937999999999999
|
1630 |
+
- type: map_at_100
|
1631 |
+
value: 15.588
|
1632 |
+
- type: map_at_1000
|
1633 |
+
value: 15.939
|
1634 |
+
- type: map_at_3
|
1635 |
+
value: 9.135
|
1636 |
+
- type: map_at_5
|
1637 |
+
value: 11.004
|
1638 |
+
- type: ndcg_at_1
|
1639 |
+
value: 24.0
|
1640 |
+
- type: ndcg_at_10
|
1641 |
+
value: 21.641
|
1642 |
+
- type: ndcg_at_100
|
1643 |
+
value: 31.212
|
1644 |
+
- type: ndcg_at_1000
|
1645 |
+
value: 36.854
|
1646 |
+
- type: ndcg_at_3
|
1647 |
+
value: 20.284
|
1648 |
+
- type: ndcg_at_5
|
1649 |
+
value: 17.737
|
1650 |
+
- type: precision_at_1
|
1651 |
+
value: 24.0
|
1652 |
+
- type: precision_at_10
|
1653 |
+
value: 11.4
|
1654 |
+
- type: precision_at_100
|
1655 |
+
value: 2.516
|
1656 |
+
- type: precision_at_1000
|
1657 |
+
value: 0.387
|
1658 |
+
- type: precision_at_3
|
1659 |
+
value: 19.167
|
1660 |
+
- type: precision_at_5
|
1661 |
+
value: 15.72
|
1662 |
+
- type: recall_at_1
|
1663 |
+
value: 4.853
|
1664 |
+
- type: recall_at_10
|
1665 |
+
value: 23.087
|
1666 |
+
- type: recall_at_100
|
1667 |
+
value: 51.012
|
1668 |
+
- type: recall_at_1000
|
1669 |
+
value: 78.49000000000001
|
1670 |
+
- type: recall_at_3
|
1671 |
+
value: 11.658
|
1672 |
+
- type: recall_at_5
|
1673 |
+
value: 15.923000000000002
|
1674 |
+
- task:
|
1675 |
+
type: STS
|
1676 |
+
dataset:
|
1677 |
+
type: mteb/sickr-sts
|
1678 |
+
name: MTEB SICK-R
|
1679 |
+
config: default
|
1680 |
+
split: test
|
1681 |
+
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
|
1682 |
+
metrics:
|
1683 |
+
- type: cos_sim_pearson
|
1684 |
+
value: 83.91595834747078
|
1685 |
+
- type: cos_sim_spearman
|
1686 |
+
value: 77.58245130495686
|
1687 |
+
- type: euclidean_pearson
|
1688 |
+
value: 80.77605511224702
|
1689 |
+
- type: euclidean_spearman
|
1690 |
+
value: 77.58244681255565
|
1691 |
+
- type: manhattan_pearson
|
1692 |
+
value: 80.70675261518134
|
1693 |
+
- type: manhattan_spearman
|
1694 |
+
value: 77.48238642250558
|
1695 |
+
- task:
|
1696 |
+
type: STS
|
1697 |
+
dataset:
|
1698 |
+
type: mteb/sts12-sts
|
1699 |
+
name: MTEB STS12
|
1700 |
+
config: default
|
1701 |
+
split: test
|
1702 |
+
revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f
|
1703 |
+
metrics:
|
1704 |
+
- type: cos_sim_pearson
|
1705 |
+
value: 81.35998585185463
|
1706 |
+
- type: cos_sim_spearman
|
1707 |
+
value: 72.36900735029991
|
1708 |
+
- type: euclidean_pearson
|
1709 |
+
value: 77.44425972881783
|
1710 |
+
- type: euclidean_spearman
|
1711 |
+
value: 72.36900735029991
|
1712 |
+
- type: manhattan_pearson
|
1713 |
+
value: 77.48268272405316
|
1714 |
+
- type: manhattan_spearman
|
1715 |
+
value: 72.36650357806357
|
1716 |
+
- task:
|
1717 |
+
type: STS
|
1718 |
+
dataset:
|
1719 |
+
type: mteb/sts13-sts
|
1720 |
+
name: MTEB STS13
|
1721 |
+
config: default
|
1722 |
+
split: test
|
1723 |
+
revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9
|
1724 |
+
metrics:
|
1725 |
+
- type: cos_sim_pearson
|
1726 |
+
value: 80.15192226911441
|
1727 |
+
- type: cos_sim_spearman
|
1728 |
+
value: 80.60316722220763
|
1729 |
+
- type: euclidean_pearson
|
1730 |
+
value: 79.9515074804673
|
1731 |
+
- type: euclidean_spearman
|
1732 |
+
value: 80.60316715056034
|
1733 |
+
- type: manhattan_pearson
|
1734 |
+
value: 80.01037050043855
|
1735 |
+
- type: manhattan_spearman
|
1736 |
+
value: 80.70244228209006
|
1737 |
+
- task:
|
1738 |
+
type: STS
|
1739 |
+
dataset:
|
1740 |
+
type: mteb/sts14-sts
|
1741 |
+
name: MTEB STS14
|
1742 |
+
config: default
|
1743 |
+
split: test
|
1744 |
+
revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b
|
1745 |
+
metrics:
|
1746 |
+
- type: cos_sim_pearson
|
1747 |
+
value: 80.80137749134273
|
1748 |
+
- type: cos_sim_spearman
|
1749 |
+
value: 75.58912800301661
|
1750 |
+
- type: euclidean_pearson
|
1751 |
+
value: 78.89739732785547
|
1752 |
+
- type: euclidean_spearman
|
1753 |
+
value: 75.58912800301661
|
1754 |
+
- type: manhattan_pearson
|
1755 |
+
value: 78.88130916509184
|
1756 |
+
- type: manhattan_spearman
|
1757 |
+
value: 75.56512617108156
|
1758 |
+
- task:
|
1759 |
+
type: STS
|
1760 |
+
dataset:
|
1761 |
+
type: mteb/sts15-sts
|
1762 |
+
name: MTEB STS15
|
1763 |
+
config: default
|
1764 |
+
split: test
|
1765 |
+
revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6
|
1766 |
+
metrics:
|
1767 |
+
- type: cos_sim_pearson
|
1768 |
+
value: 84.73605558012511
|
1769 |
+
- type: cos_sim_spearman
|
1770 |
+
value: 85.38966051883823
|
1771 |
+
- type: euclidean_pearson
|
1772 |
+
value: 84.65792305262497
|
1773 |
+
- type: euclidean_spearman
|
1774 |
+
value: 85.38965068015148
|
1775 |
+
- type: manhattan_pearson
|
1776 |
+
value: 84.6284531553976
|
1777 |
+
- type: manhattan_spearman
|
1778 |
+
value: 85.36525580485275
|
1779 |
+
- task:
|
1780 |
+
type: STS
|
1781 |
+
dataset:
|
1782 |
+
type: mteb/sts16-sts
|
1783 |
+
name: MTEB STS16
|
1784 |
+
config: default
|
1785 |
+
split: test
|
1786 |
+
revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd
|
1787 |
+
metrics:
|
1788 |
+
- type: cos_sim_pearson
|
1789 |
+
value: 77.93667023468089
|
1790 |
+
- type: cos_sim_spearman
|
1791 |
+
value: 78.98945343973261
|
1792 |
+
- type: euclidean_pearson
|
1793 |
+
value: 78.55627105899589
|
1794 |
+
- type: euclidean_spearman
|
1795 |
+
value: 78.98945343973261
|
1796 |
+
- type: manhattan_pearson
|
1797 |
+
value: 78.47171138630095
|
1798 |
+
- type: manhattan_spearman
|
1799 |
+
value: 78.90029153062082
|
1800 |
+
- task:
|
1801 |
+
type: STS
|
1802 |
+
dataset:
|
1803 |
+
type: mteb/sts17-crosslingual-sts
|
1804 |
+
name: MTEB STS17 (ko-ko)
|
1805 |
+
config: ko-ko
|
1806 |
+
split: test
|
1807 |
+
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
|
1808 |
+
metrics:
|
1809 |
+
- type: cos_sim_pearson
|
1810 |
+
value: 38.02556869388448
|
1811 |
+
- type: cos_sim_spearman
|
1812 |
+
value: 43.39452386216687
|
1813 |
+
- type: euclidean_pearson
|
1814 |
+
value: 42.85346056221848
|
1815 |
+
- type: euclidean_spearman
|
1816 |
+
value: 43.39454482701475
|
1817 |
+
- type: manhattan_pearson
|
1818 |
+
value: 42.80255086270408
|
1819 |
+
- type: manhattan_spearman
|
1820 |
+
value: 43.35745739810561
|
1821 |
+
- task:
|
1822 |
+
type: STS
|
1823 |
+
dataset:
|
1824 |
+
type: mteb/sts17-crosslingual-sts
|
1825 |
+
name: MTEB STS17 (ar-ar)
|
1826 |
+
config: ar-ar
|
1827 |
+
split: test
|
1828 |
+
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
|
1829 |
+
metrics:
|
1830 |
+
- type: cos_sim_pearson
|
1831 |
+
value: 50.19733275252325
|
1832 |
+
- type: cos_sim_spearman
|
1833 |
+
value: 50.892912699226166
|
1834 |
+
- type: euclidean_pearson
|
1835 |
+
value: 53.38352259940662
|
1836 |
+
- type: euclidean_spearman
|
1837 |
+
value: 50.892912699226166
|
1838 |
+
- type: manhattan_pearson
|
1839 |
+
value: 53.48429031763742
|
1840 |
+
- type: manhattan_spearman
|
1841 |
+
value: 50.961509277559394
|
1842 |
+
- task:
|
1843 |
+
type: STS
|
1844 |
+
dataset:
|
1845 |
+
type: mteb/sts17-crosslingual-sts
|
1846 |
+
name: MTEB STS17 (en-ar)
|
1847 |
+
config: en-ar
|
1848 |
+
split: test
|
1849 |
+
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
|
1850 |
+
metrics:
|
1851 |
+
- type: cos_sim_pearson
|
1852 |
+
value: -5.346248828225636
|
1853 |
+
- type: cos_sim_spearman
|
1854 |
+
value: -4.276245759627542
|
1855 |
+
- type: euclidean_pearson
|
1856 |
+
value: -5.34997238478067
|
1857 |
+
- type: euclidean_spearman
|
1858 |
+
value: -4.276245759627542
|
1859 |
+
- type: manhattan_pearson
|
1860 |
+
value: -1.599674226848396
|
1861 |
+
- type: manhattan_spearman
|
1862 |
+
value: -0.6972996366546237
|
1863 |
+
- task:
|
1864 |
+
type: STS
|
1865 |
+
dataset:
|
1866 |
+
type: mteb/sts17-crosslingual-sts
|
1867 |
+
name: MTEB STS17 (en-de)
|
1868 |
+
config: en-de
|
1869 |
+
split: test
|
1870 |
+
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
|
1871 |
+
metrics:
|
1872 |
+
- type: cos_sim_pearson
|
1873 |
+
value: 37.0025013483991
|
1874 |
+
- type: cos_sim_spearman
|
1875 |
+
value: 35.81883942216964
|
1876 |
+
- type: euclidean_pearson
|
1877 |
+
value: 36.69612954510884
|
1878 |
+
- type: euclidean_spearman
|
1879 |
+
value: 35.81883942216964
|
1880 |
+
- type: manhattan_pearson
|
1881 |
+
value: 35.141229073611555
|
1882 |
+
- type: manhattan_spearman
|
1883 |
+
value: 32.04594883372404
|
1884 |
+
- task:
|
1885 |
+
type: STS
|
1886 |
+
dataset:
|
1887 |
+
type: mteb/sts17-crosslingual-sts
|
1888 |
+
name: MTEB STS17 (en-en)
|
1889 |
+
config: en-en
|
1890 |
+
split: test
|
1891 |
+
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
|
1892 |
+
metrics:
|
1893 |
+
- type: cos_sim_pearson
|
1894 |
+
value: 88.02366672243191
|
1895 |
+
- type: cos_sim_spearman
|
1896 |
+
value: 87.58779089494524
|
1897 |
+
- type: euclidean_pearson
|
1898 |
+
value: 87.99011173645361
|
1899 |
+
- type: euclidean_spearman
|
1900 |
+
value: 87.58779089494524
|
1901 |
+
- type: manhattan_pearson
|
1902 |
+
value: 87.71266341564564
|
1903 |
+
- type: manhattan_spearman
|
1904 |
+
value: 87.24437101621581
|
1905 |
+
- task:
|
1906 |
+
type: STS
|
1907 |
+
dataset:
|
1908 |
+
type: mteb/sts17-crosslingual-sts
|
1909 |
+
name: MTEB STS17 (en-tr)
|
1910 |
+
config: en-tr
|
1911 |
+
split: test
|
1912 |
+
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
|
1913 |
+
metrics:
|
1914 |
+
- type: cos_sim_pearson
|
1915 |
+
value: 6.928208810824121
|
1916 |
+
- type: cos_sim_spearman
|
1917 |
+
value: 4.496540073637865
|
1918 |
+
- type: euclidean_pearson
|
1919 |
+
value: 7.258004484570359
|
1920 |
+
- type: euclidean_spearman
|
1921 |
+
value: 4.496540073637865
|
1922 |
+
- type: manhattan_pearson
|
1923 |
+
value: 4.294687250993676
|
1924 |
+
- type: manhattan_spearman
|
1925 |
+
value: 2.517822531443102
|
1926 |
+
- task:
|
1927 |
+
type: STS
|
1928 |
+
dataset:
|
1929 |
+
type: mteb/sts17-crosslingual-sts
|
1930 |
+
name: MTEB STS17 (es-en)
|
1931 |
+
config: es-en
|
1932 |
+
split: test
|
1933 |
+
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
|
1934 |
+
metrics:
|
1935 |
+
- type: cos_sim_pearson
|
1936 |
+
value: 17.49363358339176
|
1937 |
+
- type: cos_sim_spearman
|
1938 |
+
value: 16.31316318682868
|
1939 |
+
- type: euclidean_pearson
|
1940 |
+
value: 17.834234153786475
|
1941 |
+
- type: euclidean_spearman
|
1942 |
+
value: 16.31316318682868
|
1943 |
+
- type: manhattan_pearson
|
1944 |
+
value: 16.928139101229352
|
1945 |
+
- type: manhattan_spearman
|
1946 |
+
value: 15.00071366769135
|
1947 |
+
- task:
|
1948 |
+
type: STS
|
1949 |
+
dataset:
|
1950 |
+
type: mteb/sts17-crosslingual-sts
|
1951 |
+
name: MTEB STS17 (es-es)
|
1952 |
+
config: es-es
|
1953 |
+
split: test
|
1954 |
+
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
|
1955 |
+
metrics:
|
1956 |
+
- type: cos_sim_pearson
|
1957 |
+
value: 77.04145671005833
|
1958 |
+
- type: cos_sim_spearman
|
1959 |
+
value: 76.11599994398748
|
1960 |
+
- type: euclidean_pearson
|
1961 |
+
value: 78.21801117699432
|
1962 |
+
- type: euclidean_spearman
|
1963 |
+
value: 76.11599994398748
|
1964 |
+
- type: manhattan_pearson
|
1965 |
+
value: 77.87062358292948
|
1966 |
+
- type: manhattan_spearman
|
1967 |
+
value: 75.64561332109221
|
1968 |
+
- task:
|
1969 |
+
type: STS
|
1970 |
+
dataset:
|
1971 |
+
type: mteb/sts17-crosslingual-sts
|
1972 |
+
name: MTEB STS17 (fr-en)
|
1973 |
+
config: fr-en
|
1974 |
+
split: test
|
1975 |
+
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
|
1976 |
+
metrics:
|
1977 |
+
- type: cos_sim_pearson
|
1978 |
+
value: 37.9961687967439
|
1979 |
+
- type: cos_sim_spearman
|
1980 |
+
value: 37.09338306656542
|
1981 |
+
- type: euclidean_pearson
|
1982 |
+
value: 37.81002317191932
|
1983 |
+
- type: euclidean_spearman
|
1984 |
+
value: 37.09338306656542
|
1985 |
+
- type: manhattan_pearson
|
1986 |
+
value: 37.58237523973875
|
1987 |
+
- type: manhattan_spearman
|
1988 |
+
value: 36.52020936925911
|
1989 |
+
- task:
|
1990 |
+
type: STS
|
1991 |
+
dataset:
|
1992 |
+
type: mteb/sts17-crosslingual-sts
|
1993 |
+
name: MTEB STS17 (it-en)
|
1994 |
+
config: it-en
|
1995 |
+
split: test
|
1996 |
+
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
|
1997 |
+
metrics:
|
1998 |
+
- type: cos_sim_pearson
|
1999 |
+
value: 26.739991134614716
|
2000 |
+
- type: cos_sim_spearman
|
2001 |
+
value: 24.4457755448559
|
2002 |
+
- type: euclidean_pearson
|
2003 |
+
value: 26.804935356831862
|
2004 |
+
- type: euclidean_spearman
|
2005 |
+
value: 24.442532087041023
|
2006 |
+
- type: manhattan_pearson
|
2007 |
+
value: 27.571123840765026
|
2008 |
+
- type: manhattan_spearman
|
2009 |
+
value: 25.554721155049045
|
2010 |
+
- task:
|
2011 |
+
type: STS
|
2012 |
+
dataset:
|
2013 |
+
type: mteb/sts17-crosslingual-sts
|
2014 |
+
name: MTEB STS17 (nl-en)
|
2015 |
+
config: nl-en
|
2016 |
+
split: test
|
2017 |
+
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
|
2018 |
+
metrics:
|
2019 |
+
- type: cos_sim_pearson
|
2020 |
+
value: 32.71761762628939
|
2021 |
+
- type: cos_sim_spearman
|
2022 |
+
value: 28.99879893370601
|
2023 |
+
- type: euclidean_pearson
|
2024 |
+
value: 32.92831060810701
|
2025 |
+
- type: euclidean_spearman
|
2026 |
+
value: 28.99879893370601
|
2027 |
+
- type: manhattan_pearson
|
2028 |
+
value: 33.30410551798337
|
2029 |
+
- type: manhattan_spearman
|
2030 |
+
value: 29.442853829506593
|
2031 |
+
- task:
|
2032 |
+
type: STS
|
2033 |
+
dataset:
|
2034 |
+
type: mteb/sts22-crosslingual-sts
|
2035 |
+
name: MTEB STS22 (en)
|
2036 |
+
config: en
|
2037 |
+
split: test
|
2038 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2039 |
+
metrics:
|
2040 |
+
- type: cos_sim_pearson
|
2041 |
+
value: 67.09882753030891
|
2042 |
+
- type: cos_sim_spearman
|
2043 |
+
value: 67.21465212910987
|
2044 |
+
- type: euclidean_pearson
|
2045 |
+
value: 68.21374069918403
|
2046 |
+
- type: euclidean_spearman
|
2047 |
+
value: 67.21465212910987
|
2048 |
+
- type: manhattan_pearson
|
2049 |
+
value: 68.41388868877884
|
2050 |
+
- type: manhattan_spearman
|
2051 |
+
value: 67.83615682571867
|
2052 |
+
- task:
|
2053 |
+
type: STS
|
2054 |
+
dataset:
|
2055 |
+
type: mteb/sts22-crosslingual-sts
|
2056 |
+
name: MTEB STS22 (de)
|
2057 |
+
config: de
|
2058 |
+
split: test
|
2059 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2060 |
+
metrics:
|
2061 |
+
- type: cos_sim_pearson
|
2062 |
+
value: 26.596033966146116
|
2063 |
+
- type: cos_sim_spearman
|
2064 |
+
value: 31.044353994772354
|
2065 |
+
- type: euclidean_pearson
|
2066 |
+
value: 21.51728902500591
|
2067 |
+
- type: euclidean_spearman
|
2068 |
+
value: 31.044353994772354
|
2069 |
+
- type: manhattan_pearson
|
2070 |
+
value: 21.718468273577894
|
2071 |
+
- type: manhattan_spearman
|
2072 |
+
value: 31.197915595597696
|
2073 |
+
- task:
|
2074 |
+
type: STS
|
2075 |
+
dataset:
|
2076 |
+
type: mteb/sts22-crosslingual-sts
|
2077 |
+
name: MTEB STS22 (es)
|
2078 |
+
config: es
|
2079 |
+
split: test
|
2080 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2081 |
+
metrics:
|
2082 |
+
- type: cos_sim_pearson
|
2083 |
+
value: 44.33815143022264
|
2084 |
+
- type: cos_sim_spearman
|
2085 |
+
value: 54.77772552456677
|
2086 |
+
- type: euclidean_pearson
|
2087 |
+
value: 48.483578263920634
|
2088 |
+
- type: euclidean_spearman
|
2089 |
+
value: 54.77772552456677
|
2090 |
+
- type: manhattan_pearson
|
2091 |
+
value: 49.29424073081744
|
2092 |
+
- type: manhattan_spearman
|
2093 |
+
value: 55.259696552690954
|
2094 |
+
- task:
|
2095 |
+
type: STS
|
2096 |
+
dataset:
|
2097 |
+
type: mteb/sts22-crosslingual-sts
|
2098 |
+
name: MTEB STS22 (pl)
|
2099 |
+
config: pl
|
2100 |
+
split: test
|
2101 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2102 |
+
metrics:
|
2103 |
+
- type: cos_sim_pearson
|
2104 |
+
value: 8.000336595206134
|
2105 |
+
- type: cos_sim_spearman
|
2106 |
+
value: 26.768906191975933
|
2107 |
+
- type: euclidean_pearson
|
2108 |
+
value: 1.4181188576056134
|
2109 |
+
- type: euclidean_spearman
|
2110 |
+
value: 26.768906191975933
|
2111 |
+
- type: manhattan_pearson
|
2112 |
+
value: 1.588769366202155
|
2113 |
+
- type: manhattan_spearman
|
2114 |
+
value: 26.76300987426348
|
2115 |
+
- task:
|
2116 |
+
type: STS
|
2117 |
+
dataset:
|
2118 |
+
type: mteb/sts22-crosslingual-sts
|
2119 |
+
name: MTEB STS22 (tr)
|
2120 |
+
config: tr
|
2121 |
+
split: test
|
2122 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2123 |
+
metrics:
|
2124 |
+
- type: cos_sim_pearson
|
2125 |
+
value: 20.597902459466386
|
2126 |
+
- type: cos_sim_spearman
|
2127 |
+
value: 33.694510807738595
|
2128 |
+
- type: euclidean_pearson
|
2129 |
+
value: 26.964862787540962
|
2130 |
+
- type: euclidean_spearman
|
2131 |
+
value: 33.694510807738595
|
2132 |
+
- type: manhattan_pearson
|
2133 |
+
value: 27.530294926210807
|
2134 |
+
- type: manhattan_spearman
|
2135 |
+
value: 33.74254435313719
|
2136 |
+
- task:
|
2137 |
+
type: STS
|
2138 |
+
dataset:
|
2139 |
+
type: mteb/sts22-crosslingual-sts
|
2140 |
+
name: MTEB STS22 (ar)
|
2141 |
+
config: ar
|
2142 |
+
split: test
|
2143 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2144 |
+
metrics:
|
2145 |
+
- type: cos_sim_pearson
|
2146 |
+
value: 5.006610360999117
|
2147 |
+
- type: cos_sim_spearman
|
2148 |
+
value: 22.63866797712348
|
2149 |
+
- type: euclidean_pearson
|
2150 |
+
value: 13.082283087945362
|
2151 |
+
- type: euclidean_spearman
|
2152 |
+
value: 22.63866797712348
|
2153 |
+
- type: manhattan_pearson
|
2154 |
+
value: 13.260328120447722
|
2155 |
+
- type: manhattan_spearman
|
2156 |
+
value: 22.340169287120716
|
2157 |
+
- task:
|
2158 |
+
type: STS
|
2159 |
+
dataset:
|
2160 |
+
type: mteb/sts22-crosslingual-sts
|
2161 |
+
name: MTEB STS22 (ru)
|
2162 |
+
config: ru
|
2163 |
+
split: test
|
2164 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2165 |
+
metrics:
|
2166 |
+
- type: cos_sim_pearson
|
2167 |
+
value: 0.03100716792233671
|
2168 |
+
- type: cos_sim_spearman
|
2169 |
+
value: 14.721380413194854
|
2170 |
+
- type: euclidean_pearson
|
2171 |
+
value: 4.871526064730011
|
2172 |
+
- type: euclidean_spearman
|
2173 |
+
value: 14.721380413194854
|
2174 |
+
- type: manhattan_pearson
|
2175 |
+
value: 5.7576102223040735
|
2176 |
+
- type: manhattan_spearman
|
2177 |
+
value: 15.08182690716095
|
2178 |
+
- task:
|
2179 |
+
type: STS
|
2180 |
+
dataset:
|
2181 |
+
type: mteb/sts22-crosslingual-sts
|
2182 |
+
name: MTEB STS22 (zh)
|
2183 |
+
config: zh
|
2184 |
+
split: test
|
2185 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2186 |
+
metrics:
|
2187 |
+
- type: cos_sim_pearson
|
2188 |
+
value: 23.127885111414432
|
2189 |
+
- type: cos_sim_spearman
|
2190 |
+
value: 44.92964024177277
|
2191 |
+
- type: euclidean_pearson
|
2192 |
+
value: 31.061639313469925
|
2193 |
+
- type: euclidean_spearman
|
2194 |
+
value: 44.92964024177277
|
2195 |
+
- type: manhattan_pearson
|
2196 |
+
value: 31.77656358573927
|
2197 |
+
- type: manhattan_spearman
|
2198 |
+
value: 44.964763982886375
|
2199 |
+
- task:
|
2200 |
+
type: STS
|
2201 |
+
dataset:
|
2202 |
+
type: mteb/sts22-crosslingual-sts
|
2203 |
+
name: MTEB STS22 (fr)
|
2204 |
+
config: fr
|
2205 |
+
split: test
|
2206 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2207 |
+
metrics:
|
2208 |
+
- type: cos_sim_pearson
|
2209 |
+
value: 70.64344773137496
|
2210 |
+
- type: cos_sim_spearman
|
2211 |
+
value: 77.00398643056744
|
2212 |
+
- type: euclidean_pearson
|
2213 |
+
value: 71.58320199923101
|
2214 |
+
- type: euclidean_spearman
|
2215 |
+
value: 77.00398643056744
|
2216 |
+
- type: manhattan_pearson
|
2217 |
+
value: 71.64373853764818
|
2218 |
+
- type: manhattan_spearman
|
2219 |
+
value: 76.71158725879226
|
2220 |
+
- task:
|
2221 |
+
type: STS
|
2222 |
+
dataset:
|
2223 |
+
type: mteb/sts22-crosslingual-sts
|
2224 |
+
name: MTEB STS22 (de-en)
|
2225 |
+
config: de-en
|
2226 |
+
split: test
|
2227 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2228 |
+
metrics:
|
2229 |
+
- type: cos_sim_pearson
|
2230 |
+
value: 47.54531236654512
|
2231 |
+
- type: cos_sim_spearman
|
2232 |
+
value: 44.038685024247606
|
2233 |
+
- type: euclidean_pearson
|
2234 |
+
value: 48.46975590869453
|
2235 |
+
- type: euclidean_spearman
|
2236 |
+
value: 44.038685024247606
|
2237 |
+
- type: manhattan_pearson
|
2238 |
+
value: 48.10217367438755
|
2239 |
+
- type: manhattan_spearman
|
2240 |
+
value: 44.4428504653391
|
2241 |
+
- task:
|
2242 |
+
type: STS
|
2243 |
+
dataset:
|
2244 |
+
type: mteb/sts22-crosslingual-sts
|
2245 |
+
name: MTEB STS22 (es-en)
|
2246 |
+
config: es-en
|
2247 |
+
split: test
|
2248 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2249 |
+
metrics:
|
2250 |
+
- type: cos_sim_pearson
|
2251 |
+
value: 49.93601240112664
|
2252 |
+
- type: cos_sim_spearman
|
2253 |
+
value: 53.41895837272506
|
2254 |
+
- type: euclidean_pearson
|
2255 |
+
value: 50.16469746986203
|
2256 |
+
- type: euclidean_spearman
|
2257 |
+
value: 53.41895837272506
|
2258 |
+
- type: manhattan_pearson
|
2259 |
+
value: 49.86265183075983
|
2260 |
+
- type: manhattan_spearman
|
2261 |
+
value: 53.10065931046005
|
2262 |
+
- task:
|
2263 |
+
type: STS
|
2264 |
+
dataset:
|
2265 |
+
type: mteb/sts22-crosslingual-sts
|
2266 |
+
name: MTEB STS22 (it)
|
2267 |
+
config: it
|
2268 |
+
split: test
|
2269 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2270 |
+
metrics:
|
2271 |
+
- type: cos_sim_pearson
|
2272 |
+
value: 57.4312835830767
|
2273 |
+
- type: cos_sim_spearman
|
2274 |
+
value: 60.39610834515271
|
2275 |
+
- type: euclidean_pearson
|
2276 |
+
value: 57.81507077373551
|
2277 |
+
- type: euclidean_spearman
|
2278 |
+
value: 60.39610834515271
|
2279 |
+
- type: manhattan_pearson
|
2280 |
+
value: 57.83823485037898
|
2281 |
+
- type: manhattan_spearman
|
2282 |
+
value: 60.374938260317535
|
2283 |
+
- task:
|
2284 |
+
type: STS
|
2285 |
+
dataset:
|
2286 |
+
type: mteb/sts22-crosslingual-sts
|
2287 |
+
name: MTEB STS22 (pl-en)
|
2288 |
+
config: pl-en
|
2289 |
+
split: test
|
2290 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2291 |
+
metrics:
|
2292 |
+
- type: cos_sim_pearson
|
2293 |
+
value: 35.08730015173829
|
2294 |
+
- type: cos_sim_spearman
|
2295 |
+
value: 32.79791295777814
|
2296 |
+
- type: euclidean_pearson
|
2297 |
+
value: 34.54132550386404
|
2298 |
+
- type: euclidean_spearman
|
2299 |
+
value: 32.79791295777814
|
2300 |
+
- type: manhattan_pearson
|
2301 |
+
value: 36.273935331272256
|
2302 |
+
- type: manhattan_spearman
|
2303 |
+
value: 35.88704294252439
|
2304 |
+
- task:
|
2305 |
+
type: STS
|
2306 |
+
dataset:
|
2307 |
+
type: mteb/sts22-crosslingual-sts
|
2308 |
+
name: MTEB STS22 (zh-en)
|
2309 |
+
config: zh-en
|
2310 |
+
split: test
|
2311 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2312 |
+
metrics:
|
2313 |
+
- type: cos_sim_pearson
|
2314 |
+
value: 37.41111741585122
|
2315 |
+
- type: cos_sim_spearman
|
2316 |
+
value: 41.64399741744448
|
2317 |
+
- type: euclidean_pearson
|
2318 |
+
value: 36.83160927711053
|
2319 |
+
- type: euclidean_spearman
|
2320 |
+
value: 41.64399741744448
|
2321 |
+
- type: manhattan_pearson
|
2322 |
+
value: 35.71015224548175
|
2323 |
+
- type: manhattan_spearman
|
2324 |
+
value: 41.460551673456045
|
2325 |
+
- task:
|
2326 |
+
type: STS
|
2327 |
+
dataset:
|
2328 |
+
type: mteb/sts22-crosslingual-sts
|
2329 |
+
name: MTEB STS22 (es-it)
|
2330 |
+
config: es-it
|
2331 |
+
split: test
|
2332 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2333 |
+
metrics:
|
2334 |
+
- type: cos_sim_pearson
|
2335 |
+
value: 42.568537775842245
|
2336 |
+
- type: cos_sim_spearman
|
2337 |
+
value: 44.2699366594503
|
2338 |
+
- type: euclidean_pearson
|
2339 |
+
value: 43.569828137034264
|
2340 |
+
- type: euclidean_spearman
|
2341 |
+
value: 44.2699366594503
|
2342 |
+
- type: manhattan_pearson
|
2343 |
+
value: 43.954212787242284
|
2344 |
+
- type: manhattan_spearman
|
2345 |
+
value: 44.32159550471527
|
2346 |
+
- task:
|
2347 |
+
type: STS
|
2348 |
+
dataset:
|
2349 |
+
type: mteb/sts22-crosslingual-sts
|
2350 |
+
name: MTEB STS22 (de-fr)
|
2351 |
+
config: de-fr
|
2352 |
+
split: test
|
2353 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2354 |
+
metrics:
|
2355 |
+
- type: cos_sim_pearson
|
2356 |
+
value: 26.472844763068938
|
2357 |
+
- type: cos_sim_spearman
|
2358 |
+
value: 30.067587482078228
|
2359 |
+
- type: euclidean_pearson
|
2360 |
+
value: 26.87230792075073
|
2361 |
+
- type: euclidean_spearman
|
2362 |
+
value: 30.067587482078228
|
2363 |
+
- type: manhattan_pearson
|
2364 |
+
value: 25.808959063835424
|
2365 |
+
- type: manhattan_spearman
|
2366 |
+
value: 27.996294873002153
|
2367 |
+
- task:
|
2368 |
+
type: STS
|
2369 |
+
dataset:
|
2370 |
+
type: mteb/sts22-crosslingual-sts
|
2371 |
+
name: MTEB STS22 (de-pl)
|
2372 |
+
config: de-pl
|
2373 |
+
split: test
|
2374 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2375 |
+
metrics:
|
2376 |
+
- type: cos_sim_pearson
|
2377 |
+
value: 7.026566971631159
|
2378 |
+
- type: cos_sim_spearman
|
2379 |
+
value: 4.9270565599404135
|
2380 |
+
- type: euclidean_pearson
|
2381 |
+
value: 6.729027056926625
|
2382 |
+
- type: euclidean_spearman
|
2383 |
+
value: 4.9270565599404135
|
2384 |
+
- type: manhattan_pearson
|
2385 |
+
value: 9.01762174854638
|
2386 |
+
- type: manhattan_spearman
|
2387 |
+
value: 7.359790736410993
|
2388 |
+
- task:
|
2389 |
+
type: STS
|
2390 |
+
dataset:
|
2391 |
+
type: mteb/sts22-crosslingual-sts
|
2392 |
+
name: MTEB STS22 (fr-pl)
|
2393 |
+
config: fr-pl
|
2394 |
+
split: test
|
2395 |
+
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
|
2396 |
+
metrics:
|
2397 |
+
- type: cos_sim_pearson
|
2398 |
+
value: 54.305559003968206
|
2399 |
+
- type: cos_sim_spearman
|
2400 |
+
value: 50.709255283710995
|
2401 |
+
- type: euclidean_pearson
|
2402 |
+
value: 53.00660084455784
|
2403 |
+
- type: euclidean_spearman
|
2404 |
+
value: 50.709255283710995
|
2405 |
+
- type: manhattan_pearson
|
2406 |
+
value: 52.33784187543789
|
2407 |
+
- type: manhattan_spearman
|
2408 |
+
value: 50.709255283710995
|
2409 |
+
- task:
|
2410 |
+
type: STS
|
2411 |
+
dataset:
|
2412 |
+
type: mteb/stsbenchmark-sts
|
2413 |
+
name: MTEB STSBenchmark
|
2414 |
+
config: default
|
2415 |
+
split: test
|
2416 |
+
revision: 8913289635987208e6e7c72789e4be2fe94b6abd
|
2417 |
+
metrics:
|
2418 |
+
- type: cos_sim_pearson
|
2419 |
+
value: 82.7406424090513
|
2420 |
+
- type: cos_sim_spearman
|
2421 |
+
value: 82.03246731235654
|
2422 |
+
- type: euclidean_pearson
|
2423 |
+
value: 82.55616747173353
|
2424 |
+
- type: euclidean_spearman
|
2425 |
+
value: 82.03246731235654
|
2426 |
+
- type: manhattan_pearson
|
2427 |
+
value: 82.49144455072748
|
2428 |
+
- type: manhattan_spearman
|
2429 |
+
value: 81.94552526855261
|
2430 |
+
- task:
|
2431 |
+
type: Reranking
|
2432 |
+
dataset:
|
2433 |
+
type: mteb/scidocs-reranking
|
2434 |
+
name: MTEB SciDocsRR
|
2435 |
+
config: default
|
2436 |
+
split: test
|
2437 |
+
revision: 56a6d0140cf6356659e2a7c1413286a774468d44
|
2438 |
+
metrics:
|
2439 |
+
- type: map
|
2440 |
+
value: 87.11941318470207
|
2441 |
+
- type: mrr
|
2442 |
+
value: 96.39370705547176
|
2443 |
+
- task:
|
2444 |
+
type: Retrieval
|
2445 |
+
dataset:
|
2446 |
+
type: scifact
|
2447 |
+
name: MTEB SciFact
|
2448 |
+
config: default
|
2449 |
+
split: test
|
2450 |
+
revision: a75ae049398addde9b70f6b268875f5cbce99089
|
2451 |
+
metrics:
|
2452 |
+
- type: map_at_1
|
2453 |
+
value: 48.233
|
2454 |
+
- type: map_at_10
|
2455 |
+
value: 59.592999999999996
|
2456 |
+
- type: map_at_100
|
2457 |
+
value: 60.307
|
2458 |
+
- type: map_at_1000
|
2459 |
+
value: 60.343
|
2460 |
+
- type: map_at_3
|
2461 |
+
value: 56.564
|
2462 |
+
- type: map_at_5
|
2463 |
+
value: 58.826
|
2464 |
+
- type: ndcg_at_1
|
2465 |
+
value: 50.333000000000006
|
2466 |
+
- type: ndcg_at_10
|
2467 |
+
value: 64.508
|
2468 |
+
- type: ndcg_at_100
|
2469 |
+
value: 67.66499999999999
|
2470 |
+
- type: ndcg_at_1000
|
2471 |
+
value: 68.552
|
2472 |
+
- type: ndcg_at_3
|
2473 |
+
value: 59.673
|
2474 |
+
- type: ndcg_at_5
|
2475 |
+
value: 62.928
|
2476 |
+
- type: precision_at_1
|
2477 |
+
value: 50.333000000000006
|
2478 |
+
- type: precision_at_10
|
2479 |
+
value: 8.833
|
2480 |
+
- type: precision_at_100
|
2481 |
+
value: 1.053
|
2482 |
+
- type: precision_at_1000
|
2483 |
+
value: 0.11199999999999999
|
2484 |
+
- type: precision_at_3
|
2485 |
+
value: 23.778
|
2486 |
+
- type: precision_at_5
|
2487 |
+
value: 16.400000000000002
|
2488 |
+
- type: recall_at_1
|
2489 |
+
value: 48.233
|
2490 |
+
- type: recall_at_10
|
2491 |
+
value: 78.333
|
2492 |
+
- type: recall_at_100
|
2493 |
+
value: 92.5
|
2494 |
+
- type: recall_at_1000
|
2495 |
+
value: 99.333
|
2496 |
+
- type: recall_at_3
|
2497 |
+
value: 66.033
|
2498 |
+
- type: recall_at_5
|
2499 |
+
value: 73.79400000000001
|
2500 |
+
- task:
|
2501 |
+
type: PairClassification
|
2502 |
+
dataset:
|
2503 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2504 |
+
name: MTEB SprintDuplicateQuestions
|
2505 |
+
config: default
|
2506 |
+
split: test
|
2507 |
+
revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea
|
2508 |
+
metrics:
|
2509 |
+
- type: cos_sim_accuracy
|
2510 |
+
value: 99.78514851485149
|
2511 |
+
- type: cos_sim_ap
|
2512 |
+
value: 94.55063045792446
|
2513 |
+
- type: cos_sim_f1
|
2514 |
+
value: 89.01265822784809
|
2515 |
+
- type: cos_sim_precision
|
2516 |
+
value: 90.15384615384615
|
2517 |
+
- type: cos_sim_recall
|
2518 |
+
value: 87.9
|
2519 |
+
- type: dot_accuracy
|
2520 |
+
value: 99.78514851485149
|
2521 |
+
- type: dot_ap
|
2522 |
+
value: 94.55063045792447
|
2523 |
+
- type: dot_f1
|
2524 |
+
value: 89.01265822784809
|
2525 |
+
- type: dot_precision
|
2526 |
+
value: 90.15384615384615
|
2527 |
+
- type: dot_recall
|
2528 |
+
value: 87.9
|
2529 |
+
- type: euclidean_accuracy
|
2530 |
+
value: 99.78514851485149
|
2531 |
+
- type: euclidean_ap
|
2532 |
+
value: 94.55063045792447
|
2533 |
+
- type: euclidean_f1
|
2534 |
+
value: 89.01265822784809
|
2535 |
+
- type: euclidean_precision
|
2536 |
+
value: 90.15384615384615
|
2537 |
+
- type: euclidean_recall
|
2538 |
+
value: 87.9
|
2539 |
+
- type: manhattan_accuracy
|
2540 |
+
value: 99.78415841584159
|
2541 |
+
- type: manhattan_ap
|
2542 |
+
value: 94.54002074215008
|
2543 |
+
- type: manhattan_f1
|
2544 |
+
value: 88.98989898989899
|
2545 |
+
- type: manhattan_precision
|
2546 |
+
value: 89.89795918367346
|
2547 |
+
- type: manhattan_recall
|
2548 |
+
value: 88.1
|
2549 |
+
- type: max_accuracy
|
2550 |
+
value: 99.78514851485149
|
2551 |
+
- type: max_ap
|
2552 |
+
value: 94.55063045792447
|
2553 |
+
- type: max_f1
|
2554 |
+
value: 89.01265822784809
|
2555 |
+
- task:
|
2556 |
+
type: Clustering
|
2557 |
+
dataset:
|
2558 |
+
type: mteb/stackexchange-clustering
|
2559 |
+
name: MTEB StackExchangeClustering
|
2560 |
+
config: default
|
2561 |
+
split: test
|
2562 |
+
revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235
|
2563 |
+
metrics:
|
2564 |
+
- type: v_measure
|
2565 |
+
value: 53.361421662036015
|
2566 |
+
- task:
|
2567 |
+
type: Clustering
|
2568 |
+
dataset:
|
2569 |
+
type: mteb/stackexchange-clustering-p2p
|
2570 |
+
name: MTEB StackExchangeClusteringP2P
|
2571 |
+
config: default
|
2572 |
+
split: test
|
2573 |
+
revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0
|
2574 |
+
metrics:
|
2575 |
+
- type: v_measure
|
2576 |
+
value: 38.001825627800976
|
2577 |
+
- task:
|
2578 |
+
type: Reranking
|
2579 |
+
dataset:
|
2580 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2581 |
+
name: MTEB StackOverflowDupQuestions
|
2582 |
+
config: default
|
2583 |
+
split: test
|
2584 |
+
revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9
|
2585 |
+
metrics:
|
2586 |
+
- type: map
|
2587 |
+
value: 50.762134384316084
|
2588 |
+
- type: mrr
|
2589 |
+
value: 51.39383594346829
|
2590 |
+
- task:
|
2591 |
+
type: Summarization
|
2592 |
+
dataset:
|
2593 |
+
type: mteb/summeval
|
2594 |
+
name: MTEB SummEval
|
2595 |
+
config: default
|
2596 |
+
split: test
|
2597 |
+
revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122
|
2598 |
+
metrics:
|
2599 |
+
- type: cos_sim_pearson
|
2600 |
+
value: 30.508420334813536
|
2601 |
+
- type: cos_sim_spearman
|
2602 |
+
value: 30.808757671244493
|
2603 |
+
- type: dot_pearson
|
2604 |
+
value: 30.508418240633862
|
2605 |
+
- type: dot_spearman
|
2606 |
+
value: 30.808757671244493
|
2607 |
+
- task:
|
2608 |
+
type: Retrieval
|
2609 |
+
dataset:
|
2610 |
+
type: trec-covid
|
2611 |
+
name: MTEB TRECCOVID
|
2612 |
+
config: default
|
2613 |
+
split: test
|
2614 |
+
revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217
|
2615 |
+
metrics:
|
2616 |
+
- type: map_at_1
|
2617 |
+
value: 0.169
|
2618 |
+
- type: map_at_10
|
2619 |
+
value: 1.054
|
2620 |
+
- type: map_at_100
|
2621 |
+
value: 5.308
|
2622 |
+
- type: map_at_1000
|
2623 |
+
value: 13.313
|
2624 |
+
- type: map_at_3
|
2625 |
+
value: 0.40800000000000003
|
2626 |
+
- type: map_at_5
|
2627 |
+
value: 0.627
|
2628 |
+
- type: ndcg_at_1
|
2629 |
+
value: 56.00000000000001
|
2630 |
+
- type: ndcg_at_10
|
2631 |
+
value: 47.246
|
2632 |
+
- type: ndcg_at_100
|
2633 |
+
value: 35.172
|
2634 |
+
- type: ndcg_at_1000
|
2635 |
+
value: 34.031
|
2636 |
+
- type: ndcg_at_3
|
2637 |
+
value: 51.939
|
2638 |
+
- type: ndcg_at_5
|
2639 |
+
value: 50.568999999999996
|
2640 |
+
- type: precision_at_1
|
2641 |
+
value: 62.0
|
2642 |
+
- type: precision_at_10
|
2643 |
+
value: 50.4
|
2644 |
+
- type: precision_at_100
|
2645 |
+
value: 36.14
|
2646 |
+
- type: precision_at_1000
|
2647 |
+
value: 15.45
|
2648 |
+
- type: precision_at_3
|
2649 |
+
value: 56.00000000000001
|
2650 |
+
- type: precision_at_5
|
2651 |
+
value: 55.2
|
2652 |
+
- type: recall_at_1
|
2653 |
+
value: 0.169
|
2654 |
+
- type: recall_at_10
|
2655 |
+
value: 1.284
|
2656 |
+
- type: recall_at_100
|
2657 |
+
value: 8.552
|
2658 |
+
- type: recall_at_1000
|
2659 |
+
value: 32.81
|
2660 |
+
- type: recall_at_3
|
2661 |
+
value: 0.44
|
2662 |
+
- type: recall_at_5
|
2663 |
+
value: 0.709
|
2664 |
+
- task:
|
2665 |
+
type: Retrieval
|
2666 |
+
dataset:
|
2667 |
+
type: webis-touche2020
|
2668 |
+
name: MTEB Touche2020
|
2669 |
+
config: default
|
2670 |
+
split: test
|
2671 |
+
revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b
|
2672 |
+
metrics:
|
2673 |
+
- type: map_at_1
|
2674 |
+
value: 1.49
|
2675 |
+
- type: map_at_10
|
2676 |
+
value: 6.39
|
2677 |
+
- type: map_at_100
|
2678 |
+
value: 11.424
|
2679 |
+
- type: map_at_1000
|
2680 |
+
value: 12.847
|
2681 |
+
- type: map_at_3
|
2682 |
+
value: 3.055
|
2683 |
+
- type: map_at_5
|
2684 |
+
value: 3.966
|
2685 |
+
- type: ndcg_at_1
|
2686 |
+
value: 17.347
|
2687 |
+
- type: ndcg_at_10
|
2688 |
+
value: 16.904
|
2689 |
+
- type: ndcg_at_100
|
2690 |
+
value: 29.187
|
2691 |
+
- type: ndcg_at_1000
|
2692 |
+
value: 40.994
|
2693 |
+
- type: ndcg_at_3
|
2694 |
+
value: 15.669
|
2695 |
+
- type: ndcg_at_5
|
2696 |
+
value: 16.034000000000002
|
2697 |
+
- type: precision_at_1
|
2698 |
+
value: 18.367
|
2699 |
+
- type: precision_at_10
|
2700 |
+
value: 16.326999999999998
|
2701 |
+
- type: precision_at_100
|
2702 |
+
value: 6.673
|
2703 |
+
- type: precision_at_1000
|
2704 |
+
value: 1.439
|
2705 |
+
- type: precision_at_3
|
2706 |
+
value: 17.687
|
2707 |
+
- type: precision_at_5
|
2708 |
+
value: 17.143
|
2709 |
+
- type: recall_at_1
|
2710 |
+
value: 1.49
|
2711 |
+
- type: recall_at_10
|
2712 |
+
value: 12.499
|
2713 |
+
- type: recall_at_100
|
2714 |
+
value: 41.711
|
2715 |
+
- type: recall_at_1000
|
2716 |
+
value: 78.286
|
2717 |
+
- type: recall_at_3
|
2718 |
+
value: 4.055000000000001
|
2719 |
+
- type: recall_at_5
|
2720 |
+
value: 6.5040000000000004
|
2721 |
+
- task:
|
2722 |
+
type: Classification
|
2723 |
+
dataset:
|
2724 |
+
type: mteb/toxic_conversations_50k
|
2725 |
+
name: MTEB ToxicConversationsClassification
|
2726 |
+
config: default
|
2727 |
+
split: test
|
2728 |
+
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
|
2729 |
+
metrics:
|
2730 |
+
- type: accuracy
|
2731 |
+
value: 66.9918
|
2732 |
+
- type: ap
|
2733 |
+
value: 12.24755801720171
|
2734 |
+
- type: f1
|
2735 |
+
value: 51.31653313211933
|
2736 |
+
- task:
|
2737 |
+
type: Classification
|
2738 |
+
dataset:
|
2739 |
+
type: mteb/tweet_sentiment_extraction
|
2740 |
+
name: MTEB TweetSentimentExtractionClassification
|
2741 |
+
config: default
|
2742 |
+
split: test
|
2743 |
+
revision: 62146448f05be9e52a36b8ee9936447ea787eede
|
2744 |
+
metrics:
|
2745 |
+
- type: accuracy
|
2746 |
+
value: 55.410299943406905
|
2747 |
+
- type: f1
|
2748 |
+
value: 55.71547395803944
|
2749 |
+
- task:
|
2750 |
+
type: Clustering
|
2751 |
+
dataset:
|
2752 |
+
type: mteb/twentynewsgroups-clustering
|
2753 |
+
name: MTEB TwentyNewsgroupsClustering
|
2754 |
+
config: default
|
2755 |
+
split: test
|
2756 |
+
revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4
|
2757 |
+
metrics:
|
2758 |
+
- type: v_measure
|
2759 |
+
value: 46.860271427647774
|
2760 |
+
- task:
|
2761 |
+
type: PairClassification
|
2762 |
+
dataset:
|
2763 |
+
type: mteb/twittersemeval2015-pairclassification
|
2764 |
+
name: MTEB TwitterSemEval2015
|
2765 |
+
config: default
|
2766 |
+
split: test
|
2767 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2768 |
+
metrics:
|
2769 |
+
- type: cos_sim_accuracy
|
2770 |
+
value: 84.1151576563152
|
2771 |
+
- type: cos_sim_ap
|
2772 |
+
value: 67.85802440228593
|
2773 |
+
- type: cos_sim_f1
|
2774 |
+
value: 64.08006919560113
|
2775 |
+
- type: cos_sim_precision
|
2776 |
+
value: 60.260283523123405
|
2777 |
+
- type: cos_sim_recall
|
2778 |
+
value: 68.41688654353561
|
2779 |
+
- type: dot_accuracy
|
2780 |
+
value: 84.1151576563152
|
2781 |
+
- type: dot_ap
|
2782 |
+
value: 67.85802503410727
|
2783 |
+
- type: dot_f1
|
2784 |
+
value: 64.08006919560113
|
2785 |
+
- type: dot_precision
|
2786 |
+
value: 60.260283523123405
|
2787 |
+
- type: dot_recall
|
2788 |
+
value: 68.41688654353561
|
2789 |
+
- type: euclidean_accuracy
|
2790 |
+
value: 84.1151576563152
|
2791 |
+
- type: euclidean_ap
|
2792 |
+
value: 67.85802845168082
|
2793 |
+
- type: euclidean_f1
|
2794 |
+
value: 64.08006919560113
|
2795 |
+
- type: euclidean_precision
|
2796 |
+
value: 60.260283523123405
|
2797 |
+
- type: euclidean_recall
|
2798 |
+
value: 68.41688654353561
|
2799 |
+
- type: manhattan_accuracy
|
2800 |
+
value: 83.96614412588663
|
2801 |
+
- type: manhattan_ap
|
2802 |
+
value: 67.66935451307549
|
2803 |
+
- type: manhattan_f1
|
2804 |
+
value: 63.82363570654138
|
2805 |
+
- type: manhattan_precision
|
2806 |
+
value: 58.72312125914432
|
2807 |
+
- type: manhattan_recall
|
2808 |
+
value: 69.89445910290237
|
2809 |
+
- type: max_accuracy
|
2810 |
+
value: 84.1151576563152
|
2811 |
+
- type: max_ap
|
2812 |
+
value: 67.85802845168082
|
2813 |
+
- type: max_f1
|
2814 |
+
value: 64.08006919560113
|
2815 |
+
- task:
|
2816 |
+
type: PairClassification
|
2817 |
+
dataset:
|
2818 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2819 |
+
name: MTEB TwitterURLCorpus
|
2820 |
+
config: default
|
2821 |
+
split: test
|
2822 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2823 |
+
metrics:
|
2824 |
+
- type: cos_sim_accuracy
|
2825 |
+
value: 88.2504754142896
|
2826 |
+
- type: cos_sim_ap
|
2827 |
+
value: 84.70165951451109
|
2828 |
+
- type: cos_sim_f1
|
2829 |
+
value: 76.57057281916886
|
2830 |
+
- type: cos_sim_precision
|
2831 |
+
value: 74.5226643346451
|
2832 |
+
- type: cos_sim_recall
|
2833 |
+
value: 78.73421619956883
|
2834 |
+
- type: dot_accuracy
|
2835 |
+
value: 88.2504754142896
|
2836 |
+
- type: dot_ap
|
2837 |
+
value: 84.7016596919848
|
2838 |
+
- type: dot_f1
|
2839 |
+
value: 76.57057281916886
|
2840 |
+
- type: dot_precision
|
2841 |
+
value: 74.5226643346451
|
2842 |
+
- type: dot_recall
|
2843 |
+
value: 78.73421619956883
|
2844 |
+
- type: euclidean_accuracy
|
2845 |
+
value: 88.2504754142896
|
2846 |
+
- type: euclidean_ap
|
2847 |
+
value: 84.70166029488888
|
2848 |
+
- type: euclidean_f1
|
2849 |
+
value: 76.57057281916886
|
2850 |
+
- type: euclidean_precision
|
2851 |
+
value: 74.5226643346451
|
2852 |
+
- type: euclidean_recall
|
2853 |
+
value: 78.73421619956883
|
2854 |
+
- type: manhattan_accuracy
|
2855 |
+
value: 88.27376101214732
|
2856 |
+
- type: manhattan_ap
|
2857 |
+
value: 84.63518812822186
|
2858 |
+
- type: manhattan_f1
|
2859 |
+
value: 76.55138674594514
|
2860 |
+
- type: manhattan_precision
|
2861 |
+
value: 74.86934118513065
|
2862 |
+
- type: manhattan_recall
|
2863 |
+
value: 78.31074838312288
|
2864 |
+
- type: max_accuracy
|
2865 |
+
value: 88.27376101214732
|
2866 |
+
- type: max_ap
|
2867 |
+
value: 84.70166029488888
|
2868 |
+
- type: max_f1
|
2869 |
+
value: 76.57057281916886
|
2870 |
---
|
2871 |
|
|
|
2872 |
# all-MiniLM-L6-v2
|
2873 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
2874 |
|
|
|
2930 |
|
2931 |
## Evaluation Results
|
2932 |
|
2933 |
+
For an automated evaluation of this model, see *MTEB*: https://huggingface.co/spaces/mteb/leaderboard or the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L12-v2)
|
2934 |
|
2935 |
------
|
2936 |
|