File size: 34,185 Bytes
f3b6d34 315e6b7 f3b6d34 315e6b7 d0e8a3f bcb82ef b6d8078 bcb82ef b6d8078 bcb82ef d0e8a3f cef07f3 6b4e260 d0e8a3f dd301f2 6b4e260 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 |
---
tags:
- mteb
model-index:
- name: piccolo-large-zh
results:
- task:
type: STS
dataset:
type: C-MTEB/AFQMC
name: MTEB AFQMC
config: default
split: validation
revision: None
metrics:
- type: cos_sim_pearson
value: 51.40548754569409
- type: cos_sim_spearman
value: 54.168222315174376
- type: euclidean_pearson
value: 52.40464973459636
- type: euclidean_spearman
value: 54.26249134589867
- type: manhattan_pearson
value: 52.353782691201246
- type: manhattan_spearman
value: 54.20648078023014
- task:
type: STS
dataset:
type: C-MTEB/ATEC
name: MTEB ATEC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 53.4800486876876
- type: cos_sim_spearman
value: 54.27914644842898
- type: euclidean_pearson
value: 56.85762017857563
- type: euclidean_spearman
value: 54.3892743722252
- type: manhattan_pearson
value: 56.812630761505545
- type: manhattan_spearman
value: 54.359667416088556
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (zh)
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 40.33200000000001
- type: f1
value: 39.56855261607718
- task:
type: STS
dataset:
type: C-MTEB/BQ
name: MTEB BQ
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 60.81359612041921
- type: cos_sim_spearman
value: 62.3148582435008
- type: euclidean_pearson
value: 61.21668579008443
- type: euclidean_spearman
value: 62.3526204140884
- type: manhattan_pearson
value: 61.1558631086567
- type: manhattan_spearman
value: 62.287696221478384
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringP2P
name: MTEB CLSClusteringP2P
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 38.98356815428385
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringS2S
name: MTEB CLSClusteringS2S
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 36.04329998232363
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv1-reranking
name: MTEB CMedQAv1
config: default
split: test
revision: None
metrics:
- type: map
value: 84.79178620472841
- type: mrr
value: 87.1725
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv2-reranking
name: MTEB CMedQAv2
config: default
split: test
revision: None
metrics:
- type: map
value: 84.89085057036931
- type: mrr
value: 87.46011904761905
- task:
type: Retrieval
dataset:
type: C-MTEB/CmedqaRetrieval
name: MTEB CmedqaRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 23.351
- type: map_at_10
value: 35.284
- type: map_at_100
value: 37.222
- type: map_at_1000
value: 37.338
- type: map_at_3
value: 31.135
- type: map_at_5
value: 33.445
- type: mrr_at_1
value: 36.134
- type: mrr_at_10
value: 44.282
- type: mrr_at_100
value: 45.31
- type: mrr_at_1000
value: 45.356
- type: mrr_at_3
value: 41.615
- type: mrr_at_5
value: 43.169000000000004
- type: ndcg_at_1
value: 36.134
- type: ndcg_at_10
value: 41.982
- type: ndcg_at_100
value: 49.672
- type: ndcg_at_1000
value: 51.669
- type: ndcg_at_3
value: 36.521
- type: ndcg_at_5
value: 38.858
- type: precision_at_1
value: 36.134
- type: precision_at_10
value: 9.515
- type: precision_at_100
value: 1.5779999999999998
- type: precision_at_1000
value: 0.183
- type: precision_at_3
value: 20.747
- type: precision_at_5
value: 15.229000000000001
- type: recall_at_1
value: 23.351
- type: recall_at_10
value: 52.798
- type: recall_at_100
value: 84.806
- type: recall_at_1000
value: 98.172
- type: recall_at_3
value: 36.513
- type: recall_at_5
value: 43.701
- task:
type: PairClassification
dataset:
type: C-MTEB/CMNLI
name: MTEB Cmnli
config: default
split: validation
revision: None
metrics:
- type: cos_sim_accuracy
value: 74.74443776307878
- type: cos_sim_ap
value: 83.8325812952643
- type: cos_sim_f1
value: 76.64593609264422
- type: cos_sim_precision
value: 70.78629431570607
- type: cos_sim_recall
value: 83.56324526537293
- type: dot_accuracy
value: 73.91461214672279
- type: dot_ap
value: 82.8769105611689
- type: dot_f1
value: 75.93478260869564
- type: dot_precision
value: 70.95267113548648
- type: dot_recall
value: 81.66939443535188
- type: euclidean_accuracy
value: 74.94888755261574
- type: euclidean_ap
value: 84.00606427216371
- type: euclidean_f1
value: 76.78665681410322
- type: euclidean_precision
value: 69.99615088529639
- type: euclidean_recall
value: 85.0362403553893
- type: manhattan_accuracy
value: 74.92483463619965
- type: manhattan_ap
value: 83.97546171072935
- type: manhattan_f1
value: 76.57105320779506
- type: manhattan_precision
value: 71.99917644636606
- type: manhattan_recall
value: 81.7629179331307
- type: max_accuracy
value: 74.94888755261574
- type: max_ap
value: 84.00606427216371
- type: max_f1
value: 76.78665681410322
- task:
type: Retrieval
dataset:
type: C-MTEB/CovidRetrieval
name: MTEB CovidRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 73.34
- type: map_at_10
value: 81.462
- type: map_at_100
value: 81.661
- type: map_at_1000
value: 81.663
- type: map_at_3
value: 79.742
- type: map_at_5
value: 80.886
- type: mrr_at_1
value: 73.656
- type: mrr_at_10
value: 81.432
- type: mrr_at_100
value: 81.632
- type: mrr_at_1000
value: 81.634
- type: mrr_at_3
value: 79.786
- type: mrr_at_5
value: 80.87100000000001
- type: ndcg_at_1
value: 73.656
- type: ndcg_at_10
value: 85.036
- type: ndcg_at_100
value: 85.83
- type: ndcg_at_1000
value: 85.884
- type: ndcg_at_3
value: 81.669
- type: ndcg_at_5
value: 83.699
- type: precision_at_1
value: 73.656
- type: precision_at_10
value: 9.715
- type: precision_at_100
value: 1.005
- type: precision_at_1000
value: 0.101
- type: precision_at_3
value: 29.293999999999997
- type: precision_at_5
value: 18.587999999999997
- type: recall_at_1
value: 73.34
- type: recall_at_10
value: 96.101
- type: recall_at_100
value: 99.473
- type: recall_at_1000
value: 99.895
- type: recall_at_3
value: 87.197
- type: recall_at_5
value: 92.044
- task:
type: Retrieval
dataset:
type: C-MTEB/DuRetrieval
name: MTEB DuRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 26.351999999999997
- type: map_at_10
value: 80.977
- type: map_at_100
value: 83.795
- type: map_at_1000
value: 83.836
- type: map_at_3
value: 56.388000000000005
- type: map_at_5
value: 71.089
- type: mrr_at_1
value: 90.75
- type: mrr_at_10
value: 93.648
- type: mrr_at_100
value: 93.71000000000001
- type: mrr_at_1000
value: 93.714
- type: mrr_at_3
value: 93.43299999999999
- type: mrr_at_5
value: 93.57600000000001
- type: ndcg_at_1
value: 90.75
- type: ndcg_at_10
value: 87.971
- type: ndcg_at_100
value: 90.594
- type: ndcg_at_1000
value: 90.998
- type: ndcg_at_3
value: 87.224
- type: ndcg_at_5
value: 86.032
- type: precision_at_1
value: 90.75
- type: precision_at_10
value: 41.975
- type: precision_at_100
value: 4.807
- type: precision_at_1000
value: 0.48900000000000005
- type: precision_at_3
value: 78.167
- type: precision_at_5
value: 65.85
- type: recall_at_1
value: 26.351999999999997
- type: recall_at_10
value: 88.714
- type: recall_at_100
value: 97.367
- type: recall_at_1000
value: 99.589
- type: recall_at_3
value: 58.483
- type: recall_at_5
value: 75.359
- task:
type: Retrieval
dataset:
type: C-MTEB/EcomRetrieval
name: MTEB EcomRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 46.2
- type: map_at_10
value: 56.548
- type: map_at_100
value: 57.172
- type: map_at_1000
value: 57.192
- type: map_at_3
value: 53.983000000000004
- type: map_at_5
value: 55.408
- type: mrr_at_1
value: 46.2
- type: mrr_at_10
value: 56.548
- type: mrr_at_100
value: 57.172
- type: mrr_at_1000
value: 57.192
- type: mrr_at_3
value: 53.983000000000004
- type: mrr_at_5
value: 55.408
- type: ndcg_at_1
value: 46.2
- type: ndcg_at_10
value: 61.912
- type: ndcg_at_100
value: 64.834
- type: ndcg_at_1000
value: 65.36
- type: ndcg_at_3
value: 56.577
- type: ndcg_at_5
value: 59.15899999999999
- type: precision_at_1
value: 46.2
- type: precision_at_10
value: 7.89
- type: precision_at_100
value: 0.923
- type: precision_at_1000
value: 0.096
- type: precision_at_3
value: 21.367
- type: precision_at_5
value: 14.08
- type: recall_at_1
value: 46.2
- type: recall_at_10
value: 78.9
- type: recall_at_100
value: 92.30000000000001
- type: recall_at_1000
value: 96.39999999999999
- type: recall_at_3
value: 64.1
- type: recall_at_5
value: 70.39999999999999
- task:
type: Classification
dataset:
type: C-MTEB/IFlyTek-classification
name: MTEB IFlyTek
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 44.24778761061947
- type: f1
value: 36.410133889743115
- task:
type: Classification
dataset:
type: C-MTEB/JDReview-classification
name: MTEB JDReview
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 86.09756097560975
- type: ap
value: 53.85203082125175
- type: f1
value: 80.61318243910114
- task:
type: STS
dataset:
type: C-MTEB/LCQMC
name: MTEB LCQMC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 70.49411615067606
- type: cos_sim_spearman
value: 75.80607876548899
- type: euclidean_pearson
value: 74.67002802430761
- type: euclidean_spearman
value: 76.00290181304833
- type: manhattan_pearson
value: 74.66745498313495
- type: manhattan_spearman
value: 76.00460005446307
- task:
type: Retrieval
dataset:
type: C-MTEB/MMarcoRetrieval
name: MTEB MMarcoRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 64.388
- type: map_at_10
value: 73.94800000000001
- type: map_at_100
value: 74.279
- type: map_at_1000
value: 74.29
- type: map_at_3
value: 72.017
- type: map_at_5
value: 73.29599999999999
- type: mrr_at_1
value: 66.648
- type: mrr_at_10
value: 74.59599999999999
- type: mrr_at_100
value: 74.885
- type: mrr_at_1000
value: 74.896
- type: mrr_at_3
value: 72.88900000000001
- type: mrr_at_5
value: 74.017
- type: ndcg_at_1
value: 66.648
- type: ndcg_at_10
value: 77.833
- type: ndcg_at_100
value: 79.306
- type: ndcg_at_1000
value: 79.605
- type: ndcg_at_3
value: 74.18599999999999
- type: ndcg_at_5
value: 76.352
- type: precision_at_1
value: 66.648
- type: precision_at_10
value: 9.472999999999999
- type: precision_at_100
value: 1.0210000000000001
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 28.055999999999997
- type: precision_at_5
value: 17.974
- type: recall_at_1
value: 64.388
- type: recall_at_10
value: 89.143
- type: recall_at_100
value: 95.794
- type: recall_at_1000
value: 98.152
- type: recall_at_3
value: 79.55499999999999
- type: recall_at_5
value: 84.694
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-CN)
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.99932750504371
- type: f1
value: 66.07217986916525
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-CN)
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.08137188971082
- type: f1
value: 72.42255159515156
- task:
type: Retrieval
dataset:
type: C-MTEB/MedicalRetrieval
name: MTEB MedicalRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 49.6
- type: map_at_10
value: 56.04
- type: map_at_100
value: 56.584999999999994
- type: map_at_1000
value: 56.637
- type: map_at_3
value: 54.7
- type: map_at_5
value: 55.505
- type: mrr_at_1
value: 49.7
- type: mrr_at_10
value: 56.094
- type: mrr_at_100
value: 56.638999999999996
- type: mrr_at_1000
value: 56.691
- type: mrr_at_3
value: 54.75
- type: mrr_at_5
value: 55.54
- type: ndcg_at_1
value: 49.6
- type: ndcg_at_10
value: 59.038000000000004
- type: ndcg_at_100
value: 61.964
- type: ndcg_at_1000
value: 63.482000000000006
- type: ndcg_at_3
value: 56.297
- type: ndcg_at_5
value: 57.743
- type: precision_at_1
value: 49.6
- type: precision_at_10
value: 6.84
- type: precision_at_100
value: 0.828
- type: precision_at_1000
value: 0.095
- type: precision_at_3
value: 20.3
- type: precision_at_5
value: 12.879999999999999
- type: recall_at_1
value: 49.6
- type: recall_at_10
value: 68.4
- type: recall_at_100
value: 82.8
- type: recall_at_1000
value: 95.1
- type: recall_at_3
value: 60.9
- type: recall_at_5
value: 64.4
- task:
type: Reranking
dataset:
type: C-MTEB/Mmarco-reranking
name: MTEB MMarcoReranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 27.274633976199482
- type: mrr
value: 25.85952380952381
- task:
type: Classification
dataset:
type: C-MTEB/MultilingualSentiment-classification
name: MTEB MultilingualSentiment
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 70.15
- type: f1
value: 70.12595878910165
- task:
type: PairClassification
dataset:
type: C-MTEB/OCNLI
name: MTEB Ocnli
config: default
split: validation
revision: None
metrics:
- type: cos_sim_accuracy
value: 68.05630752571737
- type: cos_sim_ap
value: 72.9224765568519
- type: cos_sim_f1
value: 72.97297297297295
- type: cos_sim_precision
value: 62.1380846325167
- type: cos_sim_recall
value: 88.3843717001056
- type: dot_accuracy
value: 68.11044937736871
- type: dot_ap
value: 72.84095585142163
- type: dot_f1
value: 72.59574468085107
- type: dot_precision
value: 60.79828937990022
- type: dot_recall
value: 90.07391763463569
- type: euclidean_accuracy
value: 67.73145641580942
- type: euclidean_ap
value: 72.8584903276338
- type: euclidean_f1
value: 72.82095319879778
- type: euclidean_precision
value: 61.3603473227207
- type: euclidean_recall
value: 89.54593453009504
- type: manhattan_accuracy
value: 67.56903086085543
- type: manhattan_ap
value: 72.81719990959621
- type: manhattan_f1
value: 72.95855560114896
- type: manhattan_precision
value: 59.664429530201346
- type: manhattan_recall
value: 93.8753959873284
- type: max_accuracy
value: 68.11044937736871
- type: max_ap
value: 72.9224765568519
- type: max_f1
value: 72.97297297297295
- task:
type: Classification
dataset:
type: C-MTEB/OnlineShopping-classification
name: MTEB OnlineShopping
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 90.27
- type: ap
value: 87.25468287842568
- type: f1
value: 90.24230569233008
- task:
type: STS
dataset:
type: C-MTEB/PAWSX
name: MTEB PAWSX
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 34.445576951449894
- type: cos_sim_spearman
value: 38.3120125820568
- type: euclidean_pearson
value: 38.80156903904639
- type: euclidean_spearman
value: 38.240808371401656
- type: manhattan_pearson
value: 38.77317222891622
- type: manhattan_spearman
value: 38.230008722746646
- task:
type: STS
dataset:
type: C-MTEB/QBQTC
name: MTEB QBQTC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 37.990494014067295
- type: cos_sim_spearman
value: 38.218416274161385
- type: euclidean_pearson
value: 35.91543518481725
- type: euclidean_spearman
value: 37.34947320962178
- type: manhattan_pearson
value: 35.90653204921896
- type: manhattan_spearman
value: 37.3484819621432
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (zh)
config: zh
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 66.10227125673059
- type: cos_sim_spearman
value: 66.65529695940144
- type: euclidean_pearson
value: 64.41045931064728
- type: euclidean_spearman
value: 66.48371335308076
- type: manhattan_pearson
value: 64.40881380301438
- type: manhattan_spearman
value: 66.4530857331391
- task:
type: STS
dataset:
type: C-MTEB/STSB
name: MTEB STSB
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 74.46374847096926
- type: cos_sim_spearman
value: 74.42746155066217
- type: euclidean_pearson
value: 74.29184569507011
- type: euclidean_spearman
value: 74.88985827017852
- type: manhattan_pearson
value: 74.28083071864158
- type: manhattan_spearman
value: 74.8848458821044
- task:
type: Reranking
dataset:
type: C-MTEB/T2Reranking
name: MTEB T2Reranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 66.95528971496414
- type: mrr
value: 77.09135312892928
- task:
type: Retrieval
dataset:
type: C-MTEB/T2Retrieval
name: MTEB T2Retrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 26.531
- type: map_at_10
value: 74.504
- type: map_at_100
value: 78.321
- type: map_at_1000
value: 78.393
- type: map_at_3
value: 52.288000000000004
- type: map_at_5
value: 64.228
- type: mrr_at_1
value: 88.331
- type: mrr_at_10
value: 91.044
- type: mrr_at_100
value: 91.156
- type: mrr_at_1000
value: 91.161
- type: mrr_at_3
value: 90.55499999999999
- type: mrr_at_5
value: 90.857
- type: ndcg_at_1
value: 88.331
- type: ndcg_at_10
value: 82.468
- type: ndcg_at_100
value: 86.494
- type: ndcg_at_1000
value: 87.211
- type: ndcg_at_3
value: 83.979
- type: ndcg_at_5
value: 82.40899999999999
- type: precision_at_1
value: 88.331
- type: precision_at_10
value: 41.223
- type: precision_at_100
value: 4.984
- type: precision_at_1000
value: 0.515
- type: precision_at_3
value: 73.603
- type: precision_at_5
value: 61.634
- type: recall_at_1
value: 26.531
- type: recall_at_10
value: 81.432
- type: recall_at_100
value: 94.404
- type: recall_at_1000
value: 98.085
- type: recall_at_3
value: 54.055
- type: recall_at_5
value: 67.726
- task:
type: Classification
dataset:
type: C-MTEB/TNews-classification
name: MTEB TNews
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 46.543
- type: f1
value: 45.26659807296124
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringP2P
name: MTEB ThuNewsClusteringP2P
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 60.575199180159586
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringS2S
name: MTEB ThuNewsClusteringS2S
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 52.55759510188472
- task:
type: Retrieval
dataset:
type: C-MTEB/VideoRetrieval
name: MTEB VideoRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 56.2
- type: map_at_10
value: 66.497
- type: map_at_100
value: 66.994
- type: map_at_1000
value: 67.012
- type: map_at_3
value: 64.483
- type: map_at_5
value: 65.783
- type: mrr_at_1
value: 56.2
- type: mrr_at_10
value: 66.497
- type: mrr_at_100
value: 66.994
- type: mrr_at_1000
value: 67.012
- type: mrr_at_3
value: 64.483
- type: mrr_at_5
value: 65.783
- type: ndcg_at_1
value: 56.2
- type: ndcg_at_10
value: 71.18100000000001
- type: ndcg_at_100
value: 73.411
- type: ndcg_at_1000
value: 73.819
- type: ndcg_at_3
value: 67.137
- type: ndcg_at_5
value: 69.461
- type: precision_at_1
value: 56.2
- type: precision_at_10
value: 8.57
- type: precision_at_100
value: 0.9570000000000001
- type: precision_at_1000
value: 0.099
- type: precision_at_3
value: 24.933
- type: precision_at_5
value: 16.08
- type: recall_at_1
value: 56.2
- type: recall_at_10
value: 85.7
- type: recall_at_100
value: 95.7
- type: recall_at_1000
value: 98.8
- type: recall_at_3
value: 74.8
- type: recall_at_5
value: 80.4
- task:
type: Classification
dataset:
type: C-MTEB/waimai-classification
name: MTEB Waimai
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 85.54
- type: ap
value: 68.02479661585015
- type: f1
value: 83.87871999963863
---
## piccolo-large-zh
piccolo是一个通用embedding模型(中文), 由来自商汤科技的通用模型组完成训练。piccolo借鉴了E5以及GTE的训练流程,采用了两阶段的训练方式。
在第一阶段中,我们搜集和爬取了4亿的中文文本对(可视为弱监督文本对数据),并采用二元组的softmax对比学习损失来优化模型。
在第二阶段中,我们搜集整理了2000万人工标注的中文文本对(精标数据),并采用带有难负样本的三元组的softmax对比学习损失来帮助模型更好地优化。
目前,我们提供了piccolo-base-zh和piccolo-large-zh两个模型。
piccolo is a general text embedding model(chinese), powered by General Model Group from SenseTime Research.
Inspired from E5 and GTE, piccolo is trained using a two stage pipeline. On the first stage, we collect and crawl 400 million weakly supervised Chinese text pairs from the Internet,
and train the model with the pair(text and text pos) softmax contrastive loss.
On the second stage, we collect 20 million human labeled chinese text pairs dataset, and finetune the model with tiplet (text, text_pos, text_neg) contrastive loss.
Currently here we offer two different sizes of models, including piccolo-base-zh, piccolo-large-zh.
## Metric
我们将piccolo与其他的开源embedding模型在CMTEB榜单上进行了比较,请参考CMTEB榜单。我们在[eval文件夹](https://huggingface.co/sensenova/piccolo-base-zh/tree/main/eval)中提供了复现结果的脚本。
We compared the performance of the piccolo with other embedding models on the C-MTEB benchmark. please refer to the C-MTEB leaderboard.
we provide scripts in ["eval" folder](https://huggingface.co/sensenova/piccolo-base-zh/tree/main/eval) for results reproducing.
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [**piccolo-large-zh**] | 0.65 | 1024 | 512 | **64.11** | 67.03 | 47.04 | 78.38 | 65.98 | 70.93 | 58.02 |
| [bge-large-zh]| 1.3 | 1024| 512 | 63.96 | 68.32 | 48.39 | 78.94 | 65.11 | 71.52 | 54.98 |
| [**piccolo-base-zh**]| 0.2 | 768 | 512 | **63.66** | 66.98 | 47.12 | 76.61 | 66.68 | 71.2 | 55.9 |
| [bge-large-zh-no-instruct]| 1.3 | 1024 | 512 | 63.4 | 68.58 | 50.01 | 76.77 | 64.9 | 70.54 | 53 |
| [bge-base-zh]| 0.41 | 768 | 512 | 62.8 | 67.07 | 47.64 | 77.5 | 64.91 | 69.53 | 54.12 |
## Usage
在sentence-transformer package中可以很容易地调用piccolo模型
```python
# for s2s dataset, you can use piccolo as below
# 对于短对短数据集,下面是通用的使用方式
from sentence_transformers import SentenceTransformer
sentences = ["数据1", "数据2"]
model = SentenceTransformer('sensenova/piccolo-base-zh')
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
# for s2p dataset, we recommend to add instruction for passage retrieval
# 对于短对长数据集,我们推荐添加instruction,来帮助模型更好地进行检索。
from sentence_transformers import SentenceTransformer
queries = ['query_1', 'query_2']
passages = ["doc_1", "doc_2"]
model = SentenceTransformer('sensenova/piccolo-base-zh')
q_embeddings = model.encode(["查询:" + q for q in queries], normalize_embeddings=True)
p_embeddings = model.encode(["结果:" + p for p in passages], normalize_embeddings=True)
scores = q_embeddings @ p_embeddings.T
```
## Training Detail
### pretrain
pretrain 通常不需要太大的max length, 推荐128。小的max length用以提高batch size,加快训练速度,从而适应大规模数据。
pretrain 损失我们采用二元组contrastive loss,不加入hard negative, 直接采用inbatch negative,在实际训练中,我们使用了32张40G A100进行训练,单卡的batch size为1024。
Pretrain usually does not require a large max length, and 128 is recommended. A small max length is used to increase batch size and speed up training to adapt to large-scale data.
We use binary contrastive loss for pretrain loss, without adding hard negative, and directly use inbatch negative. In actual training, we used 32 40G A100 for training, and the batch size of a single card is 1024.
### finetune
finetune 通常会将 max length扩增到512。用以适应更大长度的文本输入,finetune时会多sample S2P的数据,以增强模型在retrieval任务上的性能。
finetune 损失采用三元组contrastive loss,加入hard negative,neg num通常设置为2-7,loss计算方式可以参考GTE里的improved contrastive loss。
注意: 我们给query和passage设置了不同的max length,query的max length始终保持在64。
For finetuning, we usually expands the max length to 512. To adapt to larger length text input, finetune will sample more S2P data to enhance the performance of the model on retrieval tasks.
The finetune loss uses triple contrastive loss, adding hard negative. Neg num is usually set to 2-7. The loss calculation method can refer to the improved contrastive loss in GTE.
Note: We set different max lengths for query and passage, and the max length of query is always kept at 64.
### Others
一些有用的trick:
1. 减小显存的方式: fp16 + gradient checkpointing + ZERO STAGE1 (stage2 不支持双塔结构下的gradient checkpointing) 相关issue见: https://github.com/microsoft/DeepSpeed/issues/988
2. dataset sampler,我们采用了M3E的dataset sampler,用以保证每个batch里的样本均来自于一个dataset,负样本更有价值。
3. instruction。instruction在我们的实验中对retrieval任务有非常大的性能提升,我们在每个训练样本前都加入'查询: '和'结果: '这样的instruction。
some useful tricks:
1. The way to reduce memory usage: fp16 + gradient checkpointing + ZERO STAGE1 (stage2 does not support gradient checkpointing under the double-tower structure) For related issues, see: https://github.com/microsoft/DeepSpeed/issues/ 988
2. Dataset sampler, we use M3E's dataset sampler to ensure that the samples in each batch come from a dataset, and negative samples are more valuable.
3. instruction. Instruction has greatly improved the performance of the retrieval task in our experiments. We added instructions like 'query: ' and 'result: ' before each training sample.
## Reference
这里我们列出了我们参考过的embedding项目和论文
1. [M3E](https://github.com/wangyuxinwhy/uniem)。非常棒的中文开源embedding项目,收集和整理了较多的中文高质量数据集,uniem也是一个不错的框架。
2. [Text2vec](https://github.com/shibing624/text2vec)。另一个一个非常棒的中文开源embedding项目。
3. [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)。智源AI开源的embedding模型,收集和整理了CMTEB benchmark,填补了中文embedding系统性评测的空缺。
4. [E5](https://github.com/microsoft/unilm/tree/master/e5)。来自微软的一篇文章,有非常详细的消融实验以及数据处理过滤细节。
5. [GTE](https://huggingface.co/thenlper/gte-base)。一篇来自阿里达摩的embedding论文。
Here we list the embedding projects and papers we have referenced
1. [M3E](https://github.com/wangyuxinwhy/uniem). A great Chinese open source embedding project that collects and organizes a large number of high-quality Chinese datasets. Uniem is also a good framework.
2. [Text2vec](https://github.com/shibing624/text2vec). Another great Chinese open source embedding project.
3. [Flag Embedding](https://github.com/FlagOpen/FlagEmbedding). Zhiyuan AI’s open source embedding model.They collect and organize CMTEB benchmark, filling the gap in systematic evaluation of Chinese embeddings.
4. [E5](https://github.com/microsoft/unilm/tree/master/e5). Powerd by microsoft,producing very detailed ablation experiments and data processing filtering details.
5. [GTE](https://huggingface.co/thenlper/gte-base). An embedding paper from Alibaba Damo.
## License
Piccolo 使用 MIT License,免费商用。
Piccolo use MIT License. It can be used for commercial purposes free of charge.
## Acknowledgement
piccolo 由来自商汤科技研究院的通用模型组完成训练,[Jinkin](https://huggingface.co/Jinkin) 完成了代码实现和模型训练, [Jinkin](https://huggingface.co/Jinkin),
[CCCCxxx](https://huggingface.co/CCCCxxx) 一起完成了数据搜集、整理和评测工作. 项目由 [Gaomengya](https://huggingface.co/gaomengya) 和 [chaorenwu111](https://huggingface.co/chaorenwu111) 主导。
同时,感谢[lux0933](https://huggingface.co/lux0933)以及[yangkai001](https://huggingface.co/yangkai001)的交流与讨论,提供了非常多有用的建议。
piccolo is powered by Genral Model group from SenseTime Research.
[Jinkin](https://huggingface.co/Jinkin) complete code implementation and model training.
[Jinkin](https://huggingface.co/Jinkin), [CCCCxxx](https://huggingface.co/CCCCxxx) completed the data collection、processing and model evaluation together.
Project is led by [Gaomengya](https://huggingface.co/gaomengya) and [chaorenwu111](https://huggingface.co/chaorenwu111).
At the same time, thank [lux0933](https://huggingface.co/lux0933) and [yangkai001](https://huggingface.co/yangkai001) for the discussion, which provide a lot of useful suggestions. |