update score
Browse files
README.md
CHANGED
@@ -1,3 +1,1059 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
model-index:
|
5 |
+
- name: piccolo-large-zh
|
6 |
+
results:
|
7 |
+
- task:
|
8 |
+
type: STS
|
9 |
+
dataset:
|
10 |
+
type: C-MTEB/AFQMC
|
11 |
+
name: MTEB AFQMC
|
12 |
+
config: default
|
13 |
+
split: validation
|
14 |
+
revision: None
|
15 |
+
metrics:
|
16 |
+
- type: cos_sim_pearson
|
17 |
+
value: 51.40548754569409
|
18 |
+
- type: cos_sim_spearman
|
19 |
+
value: 54.168222315174376
|
20 |
+
- type: euclidean_pearson
|
21 |
+
value: 52.40464973459636
|
22 |
+
- type: euclidean_spearman
|
23 |
+
value: 54.26249134589867
|
24 |
+
- type: manhattan_pearson
|
25 |
+
value: 52.353782691201246
|
26 |
+
- type: manhattan_spearman
|
27 |
+
value: 54.20648078023014
|
28 |
+
- task:
|
29 |
+
type: STS
|
30 |
+
dataset:
|
31 |
+
type: C-MTEB/ATEC
|
32 |
+
name: MTEB ATEC
|
33 |
+
config: default
|
34 |
+
split: test
|
35 |
+
revision: None
|
36 |
+
metrics:
|
37 |
+
- type: cos_sim_pearson
|
38 |
+
value: 53.4800486876876
|
39 |
+
- type: cos_sim_spearman
|
40 |
+
value: 54.27914644842898
|
41 |
+
- type: euclidean_pearson
|
42 |
+
value: 56.85762017857563
|
43 |
+
- type: euclidean_spearman
|
44 |
+
value: 54.3892743722252
|
45 |
+
- type: manhattan_pearson
|
46 |
+
value: 56.812630761505545
|
47 |
+
- type: manhattan_spearman
|
48 |
+
value: 54.359667416088556
|
49 |
+
- task:
|
50 |
+
type: Classification
|
51 |
+
dataset:
|
52 |
+
type: mteb/amazon_reviews_multi
|
53 |
+
name: MTEB AmazonReviewsClassification (zh)
|
54 |
+
config: zh
|
55 |
+
split: test
|
56 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
57 |
+
metrics:
|
58 |
+
- type: accuracy
|
59 |
+
value: 40.33200000000001
|
60 |
+
- type: f1
|
61 |
+
value: 39.56855261607718
|
62 |
+
- task:
|
63 |
+
type: STS
|
64 |
+
dataset:
|
65 |
+
type: C-MTEB/BQ
|
66 |
+
name: MTEB BQ
|
67 |
+
config: default
|
68 |
+
split: test
|
69 |
+
revision: None
|
70 |
+
metrics:
|
71 |
+
- type: cos_sim_pearson
|
72 |
+
value: 60.81359612041921
|
73 |
+
- type: cos_sim_spearman
|
74 |
+
value: 62.3148582435008
|
75 |
+
- type: euclidean_pearson
|
76 |
+
value: 61.21668579008443
|
77 |
+
- type: euclidean_spearman
|
78 |
+
value: 62.3526204140884
|
79 |
+
- type: manhattan_pearson
|
80 |
+
value: 61.1558631086567
|
81 |
+
- type: manhattan_spearman
|
82 |
+
value: 62.287696221478384
|
83 |
+
- task:
|
84 |
+
type: Clustering
|
85 |
+
dataset:
|
86 |
+
type: C-MTEB/CLSClusteringP2P
|
87 |
+
name: MTEB CLSClusteringP2P
|
88 |
+
config: default
|
89 |
+
split: test
|
90 |
+
revision: None
|
91 |
+
metrics:
|
92 |
+
- type: v_measure
|
93 |
+
value: 38.98356815428385
|
94 |
+
- task:
|
95 |
+
type: Clustering
|
96 |
+
dataset:
|
97 |
+
type: C-MTEB/CLSClusteringS2S
|
98 |
+
name: MTEB CLSClusteringS2S
|
99 |
+
config: default
|
100 |
+
split: test
|
101 |
+
revision: None
|
102 |
+
metrics:
|
103 |
+
- type: v_measure
|
104 |
+
value: 36.04329998232363
|
105 |
+
- task:
|
106 |
+
type: Reranking
|
107 |
+
dataset:
|
108 |
+
type: C-MTEB/CMedQAv1-reranking
|
109 |
+
name: MTEB CMedQAv1
|
110 |
+
config: default
|
111 |
+
split: test
|
112 |
+
revision: None
|
113 |
+
metrics:
|
114 |
+
- type: map
|
115 |
+
value: 84.79178620472841
|
116 |
+
- type: mrr
|
117 |
+
value: 87.1725
|
118 |
+
- task:
|
119 |
+
type: Reranking
|
120 |
+
dataset:
|
121 |
+
type: C-MTEB/CMedQAv2-reranking
|
122 |
+
name: MTEB CMedQAv2
|
123 |
+
config: default
|
124 |
+
split: test
|
125 |
+
revision: None
|
126 |
+
metrics:
|
127 |
+
- type: map
|
128 |
+
value: 84.89085057036931
|
129 |
+
- type: mrr
|
130 |
+
value: 87.46011904761905
|
131 |
+
- task:
|
132 |
+
type: Retrieval
|
133 |
+
dataset:
|
134 |
+
type: C-MTEB/CmedqaRetrieval
|
135 |
+
name: MTEB CmedqaRetrieval
|
136 |
+
config: default
|
137 |
+
split: dev
|
138 |
+
revision: None
|
139 |
+
metrics:
|
140 |
+
- type: map_at_1
|
141 |
+
value: 23.351
|
142 |
+
- type: map_at_10
|
143 |
+
value: 35.284
|
144 |
+
- type: map_at_100
|
145 |
+
value: 37.222
|
146 |
+
- type: map_at_1000
|
147 |
+
value: 37.338
|
148 |
+
- type: map_at_3
|
149 |
+
value: 31.135
|
150 |
+
- type: map_at_5
|
151 |
+
value: 33.445
|
152 |
+
- type: mrr_at_1
|
153 |
+
value: 36.134
|
154 |
+
- type: mrr_at_10
|
155 |
+
value: 44.282
|
156 |
+
- type: mrr_at_100
|
157 |
+
value: 45.31
|
158 |
+
- type: mrr_at_1000
|
159 |
+
value: 45.356
|
160 |
+
- type: mrr_at_3
|
161 |
+
value: 41.615
|
162 |
+
- type: mrr_at_5
|
163 |
+
value: 43.169000000000004
|
164 |
+
- type: ndcg_at_1
|
165 |
+
value: 36.134
|
166 |
+
- type: ndcg_at_10
|
167 |
+
value: 41.982
|
168 |
+
- type: ndcg_at_100
|
169 |
+
value: 49.672
|
170 |
+
- type: ndcg_at_1000
|
171 |
+
value: 51.669
|
172 |
+
- type: ndcg_at_3
|
173 |
+
value: 36.521
|
174 |
+
- type: ndcg_at_5
|
175 |
+
value: 38.858
|
176 |
+
- type: precision_at_1
|
177 |
+
value: 36.134
|
178 |
+
- type: precision_at_10
|
179 |
+
value: 9.515
|
180 |
+
- type: precision_at_100
|
181 |
+
value: 1.5779999999999998
|
182 |
+
- type: precision_at_1000
|
183 |
+
value: 0.183
|
184 |
+
- type: precision_at_3
|
185 |
+
value: 20.747
|
186 |
+
- type: precision_at_5
|
187 |
+
value: 15.229000000000001
|
188 |
+
- type: recall_at_1
|
189 |
+
value: 23.351
|
190 |
+
- type: recall_at_10
|
191 |
+
value: 52.798
|
192 |
+
- type: recall_at_100
|
193 |
+
value: 84.806
|
194 |
+
- type: recall_at_1000
|
195 |
+
value: 98.172
|
196 |
+
- type: recall_at_3
|
197 |
+
value: 36.513
|
198 |
+
- type: recall_at_5
|
199 |
+
value: 43.701
|
200 |
+
- task:
|
201 |
+
type: PairClassification
|
202 |
+
dataset:
|
203 |
+
type: C-MTEB/CMNLI
|
204 |
+
name: MTEB Cmnli
|
205 |
+
config: default
|
206 |
+
split: validation
|
207 |
+
revision: None
|
208 |
+
metrics:
|
209 |
+
- type: cos_sim_accuracy
|
210 |
+
value: 74.74443776307878
|
211 |
+
- type: cos_sim_ap
|
212 |
+
value: 83.8325812952643
|
213 |
+
- type: cos_sim_f1
|
214 |
+
value: 76.64593609264422
|
215 |
+
- type: cos_sim_precision
|
216 |
+
value: 70.78629431570607
|
217 |
+
- type: cos_sim_recall
|
218 |
+
value: 83.56324526537293
|
219 |
+
- type: dot_accuracy
|
220 |
+
value: 73.91461214672279
|
221 |
+
- type: dot_ap
|
222 |
+
value: 82.8769105611689
|
223 |
+
- type: dot_f1
|
224 |
+
value: 75.93478260869564
|
225 |
+
- type: dot_precision
|
226 |
+
value: 70.95267113548648
|
227 |
+
- type: dot_recall
|
228 |
+
value: 81.66939443535188
|
229 |
+
- type: euclidean_accuracy
|
230 |
+
value: 74.94888755261574
|
231 |
+
- type: euclidean_ap
|
232 |
+
value: 84.00606427216371
|
233 |
+
- type: euclidean_f1
|
234 |
+
value: 76.78665681410322
|
235 |
+
- type: euclidean_precision
|
236 |
+
value: 69.99615088529639
|
237 |
+
- type: euclidean_recall
|
238 |
+
value: 85.0362403553893
|
239 |
+
- type: manhattan_accuracy
|
240 |
+
value: 74.92483463619965
|
241 |
+
- type: manhattan_ap
|
242 |
+
value: 83.97546171072935
|
243 |
+
- type: manhattan_f1
|
244 |
+
value: 76.57105320779506
|
245 |
+
- type: manhattan_precision
|
246 |
+
value: 71.99917644636606
|
247 |
+
- type: manhattan_recall
|
248 |
+
value: 81.7629179331307
|
249 |
+
- type: max_accuracy
|
250 |
+
value: 74.94888755261574
|
251 |
+
- type: max_ap
|
252 |
+
value: 84.00606427216371
|
253 |
+
- type: max_f1
|
254 |
+
value: 76.78665681410322
|
255 |
+
- task:
|
256 |
+
type: Retrieval
|
257 |
+
dataset:
|
258 |
+
type: C-MTEB/CovidRetrieval
|
259 |
+
name: MTEB CovidRetrieval
|
260 |
+
config: default
|
261 |
+
split: dev
|
262 |
+
revision: None
|
263 |
+
metrics:
|
264 |
+
- type: map_at_1
|
265 |
+
value: 73.34
|
266 |
+
- type: map_at_10
|
267 |
+
value: 81.462
|
268 |
+
- type: map_at_100
|
269 |
+
value: 81.661
|
270 |
+
- type: map_at_1000
|
271 |
+
value: 81.663
|
272 |
+
- type: map_at_3
|
273 |
+
value: 79.742
|
274 |
+
- type: map_at_5
|
275 |
+
value: 80.886
|
276 |
+
- type: mrr_at_1
|
277 |
+
value: 73.656
|
278 |
+
- type: mrr_at_10
|
279 |
+
value: 81.432
|
280 |
+
- type: mrr_at_100
|
281 |
+
value: 81.632
|
282 |
+
- type: mrr_at_1000
|
283 |
+
value: 81.634
|
284 |
+
- type: mrr_at_3
|
285 |
+
value: 79.786
|
286 |
+
- type: mrr_at_5
|
287 |
+
value: 80.87100000000001
|
288 |
+
- type: ndcg_at_1
|
289 |
+
value: 73.656
|
290 |
+
- type: ndcg_at_10
|
291 |
+
value: 85.036
|
292 |
+
- type: ndcg_at_100
|
293 |
+
value: 85.83
|
294 |
+
- type: ndcg_at_1000
|
295 |
+
value: 85.884
|
296 |
+
- type: ndcg_at_3
|
297 |
+
value: 81.669
|
298 |
+
- type: ndcg_at_5
|
299 |
+
value: 83.699
|
300 |
+
- type: precision_at_1
|
301 |
+
value: 73.656
|
302 |
+
- type: precision_at_10
|
303 |
+
value: 9.715
|
304 |
+
- type: precision_at_100
|
305 |
+
value: 1.005
|
306 |
+
- type: precision_at_1000
|
307 |
+
value: 0.101
|
308 |
+
- type: precision_at_3
|
309 |
+
value: 29.293999999999997
|
310 |
+
- type: precision_at_5
|
311 |
+
value: 18.587999999999997
|
312 |
+
- type: recall_at_1
|
313 |
+
value: 73.34
|
314 |
+
- type: recall_at_10
|
315 |
+
value: 96.101
|
316 |
+
- type: recall_at_100
|
317 |
+
value: 99.473
|
318 |
+
- type: recall_at_1000
|
319 |
+
value: 99.895
|
320 |
+
- type: recall_at_3
|
321 |
+
value: 87.197
|
322 |
+
- type: recall_at_5
|
323 |
+
value: 92.044
|
324 |
+
- task:
|
325 |
+
type: Retrieval
|
326 |
+
dataset:
|
327 |
+
type: C-MTEB/DuRetrieval
|
328 |
+
name: MTEB DuRetrieval
|
329 |
+
config: default
|
330 |
+
split: dev
|
331 |
+
revision: None
|
332 |
+
metrics:
|
333 |
+
- type: map_at_1
|
334 |
+
value: 26.351999999999997
|
335 |
+
- type: map_at_10
|
336 |
+
value: 80.977
|
337 |
+
- type: map_at_100
|
338 |
+
value: 83.795
|
339 |
+
- type: map_at_1000
|
340 |
+
value: 83.836
|
341 |
+
- type: map_at_3
|
342 |
+
value: 56.388000000000005
|
343 |
+
- type: map_at_5
|
344 |
+
value: 71.089
|
345 |
+
- type: mrr_at_1
|
346 |
+
value: 90.75
|
347 |
+
- type: mrr_at_10
|
348 |
+
value: 93.648
|
349 |
+
- type: mrr_at_100
|
350 |
+
value: 93.71000000000001
|
351 |
+
- type: mrr_at_1000
|
352 |
+
value: 93.714
|
353 |
+
- type: mrr_at_3
|
354 |
+
value: 93.43299999999999
|
355 |
+
- type: mrr_at_5
|
356 |
+
value: 93.57600000000001
|
357 |
+
- type: ndcg_at_1
|
358 |
+
value: 90.75
|
359 |
+
- type: ndcg_at_10
|
360 |
+
value: 87.971
|
361 |
+
- type: ndcg_at_100
|
362 |
+
value: 90.594
|
363 |
+
- type: ndcg_at_1000
|
364 |
+
value: 90.998
|
365 |
+
- type: ndcg_at_3
|
366 |
+
value: 87.224
|
367 |
+
- type: ndcg_at_5
|
368 |
+
value: 86.032
|
369 |
+
- type: precision_at_1
|
370 |
+
value: 90.75
|
371 |
+
- type: precision_at_10
|
372 |
+
value: 41.975
|
373 |
+
- type: precision_at_100
|
374 |
+
value: 4.807
|
375 |
+
- type: precision_at_1000
|
376 |
+
value: 0.48900000000000005
|
377 |
+
- type: precision_at_3
|
378 |
+
value: 78.167
|
379 |
+
- type: precision_at_5
|
380 |
+
value: 65.85
|
381 |
+
- type: recall_at_1
|
382 |
+
value: 26.351999999999997
|
383 |
+
- type: recall_at_10
|
384 |
+
value: 88.714
|
385 |
+
- type: recall_at_100
|
386 |
+
value: 97.367
|
387 |
+
- type: recall_at_1000
|
388 |
+
value: 99.589
|
389 |
+
- type: recall_at_3
|
390 |
+
value: 58.483
|
391 |
+
- type: recall_at_5
|
392 |
+
value: 75.359
|
393 |
+
- task:
|
394 |
+
type: Retrieval
|
395 |
+
dataset:
|
396 |
+
type: C-MTEB/EcomRetrieval
|
397 |
+
name: MTEB EcomRetrieval
|
398 |
+
config: default
|
399 |
+
split: dev
|
400 |
+
revision: None
|
401 |
+
metrics:
|
402 |
+
- type: map_at_1
|
403 |
+
value: 46.2
|
404 |
+
- type: map_at_10
|
405 |
+
value: 56.548
|
406 |
+
- type: map_at_100
|
407 |
+
value: 57.172
|
408 |
+
- type: map_at_1000
|
409 |
+
value: 57.192
|
410 |
+
- type: map_at_3
|
411 |
+
value: 53.983000000000004
|
412 |
+
- type: map_at_5
|
413 |
+
value: 55.408
|
414 |
+
- type: mrr_at_1
|
415 |
+
value: 46.2
|
416 |
+
- type: mrr_at_10
|
417 |
+
value: 56.548
|
418 |
+
- type: mrr_at_100
|
419 |
+
value: 57.172
|
420 |
+
- type: mrr_at_1000
|
421 |
+
value: 57.192
|
422 |
+
- type: mrr_at_3
|
423 |
+
value: 53.983000000000004
|
424 |
+
- type: mrr_at_5
|
425 |
+
value: 55.408
|
426 |
+
- type: ndcg_at_1
|
427 |
+
value: 46.2
|
428 |
+
- type: ndcg_at_10
|
429 |
+
value: 61.912
|
430 |
+
- type: ndcg_at_100
|
431 |
+
value: 64.834
|
432 |
+
- type: ndcg_at_1000
|
433 |
+
value: 65.36
|
434 |
+
- type: ndcg_at_3
|
435 |
+
value: 56.577
|
436 |
+
- type: ndcg_at_5
|
437 |
+
value: 59.15899999999999
|
438 |
+
- type: precision_at_1
|
439 |
+
value: 46.2
|
440 |
+
- type: precision_at_10
|
441 |
+
value: 7.89
|
442 |
+
- type: precision_at_100
|
443 |
+
value: 0.923
|
444 |
+
- type: precision_at_1000
|
445 |
+
value: 0.096
|
446 |
+
- type: precision_at_3
|
447 |
+
value: 21.367
|
448 |
+
- type: precision_at_5
|
449 |
+
value: 14.08
|
450 |
+
- type: recall_at_1
|
451 |
+
value: 46.2
|
452 |
+
- type: recall_at_10
|
453 |
+
value: 78.9
|
454 |
+
- type: recall_at_100
|
455 |
+
value: 92.30000000000001
|
456 |
+
- type: recall_at_1000
|
457 |
+
value: 96.39999999999999
|
458 |
+
- type: recall_at_3
|
459 |
+
value: 64.1
|
460 |
+
- type: recall_at_5
|
461 |
+
value: 70.39999999999999
|
462 |
+
- task:
|
463 |
+
type: Classification
|
464 |
+
dataset:
|
465 |
+
type: C-MTEB/IFlyTek-classification
|
466 |
+
name: MTEB IFlyTek
|
467 |
+
config: default
|
468 |
+
split: validation
|
469 |
+
revision: None
|
470 |
+
metrics:
|
471 |
+
- type: accuracy
|
472 |
+
value: 44.24778761061947
|
473 |
+
- type: f1
|
474 |
+
value: 36.410133889743115
|
475 |
+
- task:
|
476 |
+
type: Classification
|
477 |
+
dataset:
|
478 |
+
type: C-MTEB/JDReview-classification
|
479 |
+
name: MTEB JDReview
|
480 |
+
config: default
|
481 |
+
split: test
|
482 |
+
revision: None
|
483 |
+
metrics:
|
484 |
+
- type: accuracy
|
485 |
+
value: 86.09756097560975
|
486 |
+
- type: ap
|
487 |
+
value: 53.85203082125175
|
488 |
+
- type: f1
|
489 |
+
value: 80.61318243910114
|
490 |
+
- task:
|
491 |
+
type: STS
|
492 |
+
dataset:
|
493 |
+
type: C-MTEB/LCQMC
|
494 |
+
name: MTEB LCQMC
|
495 |
+
config: default
|
496 |
+
split: test
|
497 |
+
revision: None
|
498 |
+
metrics:
|
499 |
+
- type: cos_sim_pearson
|
500 |
+
value: 70.49411615067606
|
501 |
+
- type: cos_sim_spearman
|
502 |
+
value: 75.80607876548899
|
503 |
+
- type: euclidean_pearson
|
504 |
+
value: 74.67002802430761
|
505 |
+
- type: euclidean_spearman
|
506 |
+
value: 76.00290181304833
|
507 |
+
- type: manhattan_pearson
|
508 |
+
value: 74.66745498313495
|
509 |
+
- type: manhattan_spearman
|
510 |
+
value: 76.00460005446307
|
511 |
+
- task:
|
512 |
+
type: Retrieval
|
513 |
+
dataset:
|
514 |
+
type: C-MTEB/MMarcoRetrieval
|
515 |
+
name: MTEB MMarcoRetrieval
|
516 |
+
config: default
|
517 |
+
split: dev
|
518 |
+
revision: None
|
519 |
+
metrics:
|
520 |
+
- type: map_at_1
|
521 |
+
value: 64.388
|
522 |
+
- type: map_at_10
|
523 |
+
value: 73.94800000000001
|
524 |
+
- type: map_at_100
|
525 |
+
value: 74.279
|
526 |
+
- type: map_at_1000
|
527 |
+
value: 74.29
|
528 |
+
- type: map_at_3
|
529 |
+
value: 72.017
|
530 |
+
- type: map_at_5
|
531 |
+
value: 73.29599999999999
|
532 |
+
- type: mrr_at_1
|
533 |
+
value: 66.648
|
534 |
+
- type: mrr_at_10
|
535 |
+
value: 74.59599999999999
|
536 |
+
- type: mrr_at_100
|
537 |
+
value: 74.885
|
538 |
+
- type: mrr_at_1000
|
539 |
+
value: 74.896
|
540 |
+
- type: mrr_at_3
|
541 |
+
value: 72.88900000000001
|
542 |
+
- type: mrr_at_5
|
543 |
+
value: 74.017
|
544 |
+
- type: ndcg_at_1
|
545 |
+
value: 66.648
|
546 |
+
- type: ndcg_at_10
|
547 |
+
value: 77.833
|
548 |
+
- type: ndcg_at_100
|
549 |
+
value: 79.306
|
550 |
+
- type: ndcg_at_1000
|
551 |
+
value: 79.605
|
552 |
+
- type: ndcg_at_3
|
553 |
+
value: 74.18599999999999
|
554 |
+
- type: ndcg_at_5
|
555 |
+
value: 76.352
|
556 |
+
- type: precision_at_1
|
557 |
+
value: 66.648
|
558 |
+
- type: precision_at_10
|
559 |
+
value: 9.472999999999999
|
560 |
+
- type: precision_at_100
|
561 |
+
value: 1.0210000000000001
|
562 |
+
- type: precision_at_1000
|
563 |
+
value: 0.105
|
564 |
+
- type: precision_at_3
|
565 |
+
value: 28.055999999999997
|
566 |
+
- type: precision_at_5
|
567 |
+
value: 17.974
|
568 |
+
- type: recall_at_1
|
569 |
+
value: 64.388
|
570 |
+
- type: recall_at_10
|
571 |
+
value: 89.143
|
572 |
+
- type: recall_at_100
|
573 |
+
value: 95.794
|
574 |
+
- type: recall_at_1000
|
575 |
+
value: 98.152
|
576 |
+
- type: recall_at_3
|
577 |
+
value: 79.55499999999999
|
578 |
+
- type: recall_at_5
|
579 |
+
value: 84.694
|
580 |
+
- task:
|
581 |
+
type: Classification
|
582 |
+
dataset:
|
583 |
+
type: mteb/amazon_massive_intent
|
584 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
585 |
+
config: zh-CN
|
586 |
+
split: test
|
587 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
588 |
+
metrics:
|
589 |
+
- type: accuracy
|
590 |
+
value: 67.99932750504371
|
591 |
+
- type: f1
|
592 |
+
value: 66.07217986916525
|
593 |
+
- task:
|
594 |
+
type: Classification
|
595 |
+
dataset:
|
596 |
+
type: mteb/amazon_massive_scenario
|
597 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
598 |
+
config: zh-CN
|
599 |
+
split: test
|
600 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
601 |
+
metrics:
|
602 |
+
- type: accuracy
|
603 |
+
value: 72.08137188971082
|
604 |
+
- type: f1
|
605 |
+
value: 72.42255159515156
|
606 |
+
- task:
|
607 |
+
type: Retrieval
|
608 |
+
dataset:
|
609 |
+
type: C-MTEB/MedicalRetrieval
|
610 |
+
name: MTEB MedicalRetrieval
|
611 |
+
config: default
|
612 |
+
split: dev
|
613 |
+
revision: None
|
614 |
+
metrics:
|
615 |
+
- type: map_at_1
|
616 |
+
value: 49.6
|
617 |
+
- type: map_at_10
|
618 |
+
value: 56.04
|
619 |
+
- type: map_at_100
|
620 |
+
value: 56.584999999999994
|
621 |
+
- type: map_at_1000
|
622 |
+
value: 56.637
|
623 |
+
- type: map_at_3
|
624 |
+
value: 54.7
|
625 |
+
- type: map_at_5
|
626 |
+
value: 55.505
|
627 |
+
- type: mrr_at_1
|
628 |
+
value: 49.7
|
629 |
+
- type: mrr_at_10
|
630 |
+
value: 56.094
|
631 |
+
- type: mrr_at_100
|
632 |
+
value: 56.638999999999996
|
633 |
+
- type: mrr_at_1000
|
634 |
+
value: 56.691
|
635 |
+
- type: mrr_at_3
|
636 |
+
value: 54.75
|
637 |
+
- type: mrr_at_5
|
638 |
+
value: 55.54
|
639 |
+
- type: ndcg_at_1
|
640 |
+
value: 49.6
|
641 |
+
- type: ndcg_at_10
|
642 |
+
value: 59.038000000000004
|
643 |
+
- type: ndcg_at_100
|
644 |
+
value: 61.964
|
645 |
+
- type: ndcg_at_1000
|
646 |
+
value: 63.482000000000006
|
647 |
+
- type: ndcg_at_3
|
648 |
+
value: 56.297
|
649 |
+
- type: ndcg_at_5
|
650 |
+
value: 57.743
|
651 |
+
- type: precision_at_1
|
652 |
+
value: 49.6
|
653 |
+
- type: precision_at_10
|
654 |
+
value: 6.84
|
655 |
+
- type: precision_at_100
|
656 |
+
value: 0.828
|
657 |
+
- type: precision_at_1000
|
658 |
+
value: 0.095
|
659 |
+
- type: precision_at_3
|
660 |
+
value: 20.3
|
661 |
+
- type: precision_at_5
|
662 |
+
value: 12.879999999999999
|
663 |
+
- type: recall_at_1
|
664 |
+
value: 49.6
|
665 |
+
- type: recall_at_10
|
666 |
+
value: 68.4
|
667 |
+
- type: recall_at_100
|
668 |
+
value: 82.8
|
669 |
+
- type: recall_at_1000
|
670 |
+
value: 95.1
|
671 |
+
- type: recall_at_3
|
672 |
+
value: 60.9
|
673 |
+
- type: recall_at_5
|
674 |
+
value: 64.4
|
675 |
+
- task:
|
676 |
+
type: Reranking
|
677 |
+
dataset:
|
678 |
+
type: C-MTEB/Mmarco-reranking
|
679 |
+
name: MTEB MMarcoReranking
|
680 |
+
config: default
|
681 |
+
split: dev
|
682 |
+
revision: None
|
683 |
+
metrics:
|
684 |
+
- type: map
|
685 |
+
value: 27.274633976199482
|
686 |
+
- type: mrr
|
687 |
+
value: 25.85952380952381
|
688 |
+
- task:
|
689 |
+
type: Classification
|
690 |
+
dataset:
|
691 |
+
type: C-MTEB/MultilingualSentiment-classification
|
692 |
+
name: MTEB MultilingualSentiment
|
693 |
+
config: default
|
694 |
+
split: validation
|
695 |
+
revision: None
|
696 |
+
metrics:
|
697 |
+
- type: accuracy
|
698 |
+
value: 70.15
|
699 |
+
- type: f1
|
700 |
+
value: 70.12595878910165
|
701 |
+
- task:
|
702 |
+
type: PairClassification
|
703 |
+
dataset:
|
704 |
+
type: C-MTEB/OCNLI
|
705 |
+
name: MTEB Ocnli
|
706 |
+
config: default
|
707 |
+
split: validation
|
708 |
+
revision: None
|
709 |
+
metrics:
|
710 |
+
- type: cos_sim_accuracy
|
711 |
+
value: 68.05630752571737
|
712 |
+
- type: cos_sim_ap
|
713 |
+
value: 72.9224765568519
|
714 |
+
- type: cos_sim_f1
|
715 |
+
value: 72.97297297297295
|
716 |
+
- type: cos_sim_precision
|
717 |
+
value: 62.1380846325167
|
718 |
+
- type: cos_sim_recall
|
719 |
+
value: 88.3843717001056
|
720 |
+
- type: dot_accuracy
|
721 |
+
value: 68.11044937736871
|
722 |
+
- type: dot_ap
|
723 |
+
value: 72.84095585142163
|
724 |
+
- type: dot_f1
|
725 |
+
value: 72.59574468085107
|
726 |
+
- type: dot_precision
|
727 |
+
value: 60.79828937990022
|
728 |
+
- type: dot_recall
|
729 |
+
value: 90.07391763463569
|
730 |
+
- type: euclidean_accuracy
|
731 |
+
value: 67.73145641580942
|
732 |
+
- type: euclidean_ap
|
733 |
+
value: 72.8584903276338
|
734 |
+
- type: euclidean_f1
|
735 |
+
value: 72.82095319879778
|
736 |
+
- type: euclidean_precision
|
737 |
+
value: 61.3603473227207
|
738 |
+
- type: euclidean_recall
|
739 |
+
value: 89.54593453009504
|
740 |
+
- type: manhattan_accuracy
|
741 |
+
value: 67.56903086085543
|
742 |
+
- type: manhattan_ap
|
743 |
+
value: 72.81719990959621
|
744 |
+
- type: manhattan_f1
|
745 |
+
value: 72.95855560114896
|
746 |
+
- type: manhattan_precision
|
747 |
+
value: 59.664429530201346
|
748 |
+
- type: manhattan_recall
|
749 |
+
value: 93.8753959873284
|
750 |
+
- type: max_accuracy
|
751 |
+
value: 68.11044937736871
|
752 |
+
- type: max_ap
|
753 |
+
value: 72.9224765568519
|
754 |
+
- type: max_f1
|
755 |
+
value: 72.97297297297295
|
756 |
+
- task:
|
757 |
+
type: Classification
|
758 |
+
dataset:
|
759 |
+
type: C-MTEB/OnlineShopping-classification
|
760 |
+
name: MTEB OnlineShopping
|
761 |
+
config: default
|
762 |
+
split: test
|
763 |
+
revision: None
|
764 |
+
metrics:
|
765 |
+
- type: accuracy
|
766 |
+
value: 90.27
|
767 |
+
- type: ap
|
768 |
+
value: 87.25468287842568
|
769 |
+
- type: f1
|
770 |
+
value: 90.24230569233008
|
771 |
+
- task:
|
772 |
+
type: STS
|
773 |
+
dataset:
|
774 |
+
type: C-MTEB/PAWSX
|
775 |
+
name: MTEB PAWSX
|
776 |
+
config: default
|
777 |
+
split: test
|
778 |
+
revision: None
|
779 |
+
metrics:
|
780 |
+
- type: cos_sim_pearson
|
781 |
+
value: 34.445576951449894
|
782 |
+
- type: cos_sim_spearman
|
783 |
+
value: 38.3120125820568
|
784 |
+
- type: euclidean_pearson
|
785 |
+
value: 38.80156903904639
|
786 |
+
- type: euclidean_spearman
|
787 |
+
value: 38.240808371401656
|
788 |
+
- type: manhattan_pearson
|
789 |
+
value: 38.77317222891622
|
790 |
+
- type: manhattan_spearman
|
791 |
+
value: 38.230008722746646
|
792 |
+
- task:
|
793 |
+
type: STS
|
794 |
+
dataset:
|
795 |
+
type: C-MTEB/QBQTC
|
796 |
+
name: MTEB QBQTC
|
797 |
+
config: default
|
798 |
+
split: test
|
799 |
+
revision: None
|
800 |
+
metrics:
|
801 |
+
- type: cos_sim_pearson
|
802 |
+
value: 37.990494014067295
|
803 |
+
- type: cos_sim_spearman
|
804 |
+
value: 38.218416274161385
|
805 |
+
- type: euclidean_pearson
|
806 |
+
value: 35.91543518481725
|
807 |
+
- type: euclidean_spearman
|
808 |
+
value: 37.34947320962178
|
809 |
+
- type: manhattan_pearson
|
810 |
+
value: 35.90653204921896
|
811 |
+
- type: manhattan_spearman
|
812 |
+
value: 37.3484819621432
|
813 |
+
- task:
|
814 |
+
type: STS
|
815 |
+
dataset:
|
816 |
+
type: mteb/sts22-crosslingual-sts
|
817 |
+
name: MTEB STS22 (zh)
|
818 |
+
config: zh
|
819 |
+
split: test
|
820 |
+
revision: None
|
821 |
+
metrics:
|
822 |
+
- type: cos_sim_pearson
|
823 |
+
value: 66.10227125673059
|
824 |
+
- type: cos_sim_spearman
|
825 |
+
value: 66.65529695940144
|
826 |
+
- type: euclidean_pearson
|
827 |
+
value: 64.41045931064728
|
828 |
+
- type: euclidean_spearman
|
829 |
+
value: 66.48371335308076
|
830 |
+
- type: manhattan_pearson
|
831 |
+
value: 64.40881380301438
|
832 |
+
- type: manhattan_spearman
|
833 |
+
value: 66.4530857331391
|
834 |
+
- task:
|
835 |
+
type: STS
|
836 |
+
dataset:
|
837 |
+
type: C-MTEB/STSB
|
838 |
+
name: MTEB STSB
|
839 |
+
config: default
|
840 |
+
split: test
|
841 |
+
revision: None
|
842 |
+
metrics:
|
843 |
+
- type: cos_sim_pearson
|
844 |
+
value: 74.46374847096926
|
845 |
+
- type: cos_sim_spearman
|
846 |
+
value: 74.42746155066217
|
847 |
+
- type: euclidean_pearson
|
848 |
+
value: 74.29184569507011
|
849 |
+
- type: euclidean_spearman
|
850 |
+
value: 74.88985827017852
|
851 |
+
- type: manhattan_pearson
|
852 |
+
value: 74.28083071864158
|
853 |
+
- type: manhattan_spearman
|
854 |
+
value: 74.8848458821044
|
855 |
+
- task:
|
856 |
+
type: Reranking
|
857 |
+
dataset:
|
858 |
+
type: C-MTEB/T2Reranking
|
859 |
+
name: MTEB T2Reranking
|
860 |
+
config: default
|
861 |
+
split: dev
|
862 |
+
revision: None
|
863 |
+
metrics:
|
864 |
+
- type: map
|
865 |
+
value: 66.95528971496414
|
866 |
+
- type: mrr
|
867 |
+
value: 77.09135312892928
|
868 |
+
- task:
|
869 |
+
type: Retrieval
|
870 |
+
dataset:
|
871 |
+
type: C-MTEB/T2Retrieval
|
872 |
+
name: MTEB T2Retrieval
|
873 |
+
config: default
|
874 |
+
split: dev
|
875 |
+
revision: None
|
876 |
+
metrics:
|
877 |
+
- type: map_at_1
|
878 |
+
value: 26.531
|
879 |
+
- type: map_at_10
|
880 |
+
value: 74.504
|
881 |
+
- type: map_at_100
|
882 |
+
value: 78.321
|
883 |
+
- type: map_at_1000
|
884 |
+
value: 78.393
|
885 |
+
- type: map_at_3
|
886 |
+
value: 52.288000000000004
|
887 |
+
- type: map_at_5
|
888 |
+
value: 64.228
|
889 |
+
- type: mrr_at_1
|
890 |
+
value: 88.331
|
891 |
+
- type: mrr_at_10
|
892 |
+
value: 91.044
|
893 |
+
- type: mrr_at_100
|
894 |
+
value: 91.156
|
895 |
+
- type: mrr_at_1000
|
896 |
+
value: 91.161
|
897 |
+
- type: mrr_at_3
|
898 |
+
value: 90.55499999999999
|
899 |
+
- type: mrr_at_5
|
900 |
+
value: 90.857
|
901 |
+
- type: ndcg_at_1
|
902 |
+
value: 88.331
|
903 |
+
- type: ndcg_at_10
|
904 |
+
value: 82.468
|
905 |
+
- type: ndcg_at_100
|
906 |
+
value: 86.494
|
907 |
+
- type: ndcg_at_1000
|
908 |
+
value: 87.211
|
909 |
+
- type: ndcg_at_3
|
910 |
+
value: 83.979
|
911 |
+
- type: ndcg_at_5
|
912 |
+
value: 82.40899999999999
|
913 |
+
- type: precision_at_1
|
914 |
+
value: 88.331
|
915 |
+
- type: precision_at_10
|
916 |
+
value: 41.223
|
917 |
+
- type: precision_at_100
|
918 |
+
value: 4.984
|
919 |
+
- type: precision_at_1000
|
920 |
+
value: 0.515
|
921 |
+
- type: precision_at_3
|
922 |
+
value: 73.603
|
923 |
+
- type: precision_at_5
|
924 |
+
value: 61.634
|
925 |
+
- type: recall_at_1
|
926 |
+
value: 26.531
|
927 |
+
- type: recall_at_10
|
928 |
+
value: 81.432
|
929 |
+
- type: recall_at_100
|
930 |
+
value: 94.404
|
931 |
+
- type: recall_at_1000
|
932 |
+
value: 98.085
|
933 |
+
- type: recall_at_3
|
934 |
+
value: 54.055
|
935 |
+
- type: recall_at_5
|
936 |
+
value: 67.726
|
937 |
+
- task:
|
938 |
+
type: Classification
|
939 |
+
dataset:
|
940 |
+
type: C-MTEB/TNews-classification
|
941 |
+
name: MTEB TNews
|
942 |
+
config: default
|
943 |
+
split: validation
|
944 |
+
revision: None
|
945 |
+
metrics:
|
946 |
+
- type: accuracy
|
947 |
+
value: 46.543
|
948 |
+
- type: f1
|
949 |
+
value: 45.26659807296124
|
950 |
+
- task:
|
951 |
+
type: Clustering
|
952 |
+
dataset:
|
953 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
954 |
+
name: MTEB ThuNewsClusteringP2P
|
955 |
+
config: default
|
956 |
+
split: test
|
957 |
+
revision: None
|
958 |
+
metrics:
|
959 |
+
- type: v_measure
|
960 |
+
value: 60.575199180159586
|
961 |
+
- task:
|
962 |
+
type: Clustering
|
963 |
+
dataset:
|
964 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
965 |
+
name: MTEB ThuNewsClusteringS2S
|
966 |
+
config: default
|
967 |
+
split: test
|
968 |
+
revision: None
|
969 |
+
metrics:
|
970 |
+
- type: v_measure
|
971 |
+
value: 52.55759510188472
|
972 |
+
- task:
|
973 |
+
type: Retrieval
|
974 |
+
dataset:
|
975 |
+
type: C-MTEB/VideoRetrieval
|
976 |
+
name: MTEB VideoRetrieval
|
977 |
+
config: default
|
978 |
+
split: dev
|
979 |
+
revision: None
|
980 |
+
metrics:
|
981 |
+
- type: map_at_1
|
982 |
+
value: 56.2
|
983 |
+
- type: map_at_10
|
984 |
+
value: 66.497
|
985 |
+
- type: map_at_100
|
986 |
+
value: 66.994
|
987 |
+
- type: map_at_1000
|
988 |
+
value: 67.012
|
989 |
+
- type: map_at_3
|
990 |
+
value: 64.483
|
991 |
+
- type: map_at_5
|
992 |
+
value: 65.783
|
993 |
+
- type: mrr_at_1
|
994 |
+
value: 56.2
|
995 |
+
- type: mrr_at_10
|
996 |
+
value: 66.497
|
997 |
+
- type: mrr_at_100
|
998 |
+
value: 66.994
|
999 |
+
- type: mrr_at_1000
|
1000 |
+
value: 67.012
|
1001 |
+
- type: mrr_at_3
|
1002 |
+
value: 64.483
|
1003 |
+
- type: mrr_at_5
|
1004 |
+
value: 65.783
|
1005 |
+
- type: ndcg_at_1
|
1006 |
+
value: 56.2
|
1007 |
+
- type: ndcg_at_10
|
1008 |
+
value: 71.18100000000001
|
1009 |
+
- type: ndcg_at_100
|
1010 |
+
value: 73.411
|
1011 |
+
- type: ndcg_at_1000
|
1012 |
+
value: 73.819
|
1013 |
+
- type: ndcg_at_3
|
1014 |
+
value: 67.137
|
1015 |
+
- type: ndcg_at_5
|
1016 |
+
value: 69.461
|
1017 |
+
- type: precision_at_1
|
1018 |
+
value: 56.2
|
1019 |
+
- type: precision_at_10
|
1020 |
+
value: 8.57
|
1021 |
+
- type: precision_at_100
|
1022 |
+
value: 0.9570000000000001
|
1023 |
+
- type: precision_at_1000
|
1024 |
+
value: 0.099
|
1025 |
+
- type: precision_at_3
|
1026 |
+
value: 24.933
|
1027 |
+
- type: precision_at_5
|
1028 |
+
value: 16.08
|
1029 |
+
- type: recall_at_1
|
1030 |
+
value: 56.2
|
1031 |
+
- type: recall_at_10
|
1032 |
+
value: 85.7
|
1033 |
+
- type: recall_at_100
|
1034 |
+
value: 95.7
|
1035 |
+
- type: recall_at_1000
|
1036 |
+
value: 98.8
|
1037 |
+
- type: recall_at_3
|
1038 |
+
value: 74.8
|
1039 |
+
- type: recall_at_5
|
1040 |
+
value: 80.4
|
1041 |
+
- task:
|
1042 |
+
type: Classification
|
1043 |
+
dataset:
|
1044 |
+
type: C-MTEB/waimai-classification
|
1045 |
+
name: MTEB Waimai
|
1046 |
+
config: default
|
1047 |
+
split: test
|
1048 |
+
revision: None
|
1049 |
+
metrics:
|
1050 |
+
- type: accuracy
|
1051 |
+
value: 85.54
|
1052 |
+
- type: ap
|
1053 |
+
value: 68.02479661585015
|
1054 |
+
- type: f1
|
1055 |
+
value: 83.87871999963863
|
1056 |
---
|
1057 |
+
|
1058 |
+
|
1059 |
+
## piccolo-large-zh
|