Jinkin commited on
Commit
315e6b7
·
1 Parent(s): e81618d

update score

Browse files
Files changed (1) hide show
  1. README.md +1057 -1
README.md CHANGED
@@ -1,3 +1,1059 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
1
  ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: piccolo-large-zh
6
+ results:
7
+ - task:
8
+ type: STS
9
+ dataset:
10
+ type: C-MTEB/AFQMC
11
+ name: MTEB AFQMC
12
+ config: default
13
+ split: validation
14
+ revision: None
15
+ metrics:
16
+ - type: cos_sim_pearson
17
+ value: 51.40548754569409
18
+ - type: cos_sim_spearman
19
+ value: 54.168222315174376
20
+ - type: euclidean_pearson
21
+ value: 52.40464973459636
22
+ - type: euclidean_spearman
23
+ value: 54.26249134589867
24
+ - type: manhattan_pearson
25
+ value: 52.353782691201246
26
+ - type: manhattan_spearman
27
+ value: 54.20648078023014
28
+ - task:
29
+ type: STS
30
+ dataset:
31
+ type: C-MTEB/ATEC
32
+ name: MTEB ATEC
33
+ config: default
34
+ split: test
35
+ revision: None
36
+ metrics:
37
+ - type: cos_sim_pearson
38
+ value: 53.4800486876876
39
+ - type: cos_sim_spearman
40
+ value: 54.27914644842898
41
+ - type: euclidean_pearson
42
+ value: 56.85762017857563
43
+ - type: euclidean_spearman
44
+ value: 54.3892743722252
45
+ - type: manhattan_pearson
46
+ value: 56.812630761505545
47
+ - type: manhattan_spearman
48
+ value: 54.359667416088556
49
+ - task:
50
+ type: Classification
51
+ dataset:
52
+ type: mteb/amazon_reviews_multi
53
+ name: MTEB AmazonReviewsClassification (zh)
54
+ config: zh
55
+ split: test
56
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
57
+ metrics:
58
+ - type: accuracy
59
+ value: 40.33200000000001
60
+ - type: f1
61
+ value: 39.56855261607718
62
+ - task:
63
+ type: STS
64
+ dataset:
65
+ type: C-MTEB/BQ
66
+ name: MTEB BQ
67
+ config: default
68
+ split: test
69
+ revision: None
70
+ metrics:
71
+ - type: cos_sim_pearson
72
+ value: 60.81359612041921
73
+ - type: cos_sim_spearman
74
+ value: 62.3148582435008
75
+ - type: euclidean_pearson
76
+ value: 61.21668579008443
77
+ - type: euclidean_spearman
78
+ value: 62.3526204140884
79
+ - type: manhattan_pearson
80
+ value: 61.1558631086567
81
+ - type: manhattan_spearman
82
+ value: 62.287696221478384
83
+ - task:
84
+ type: Clustering
85
+ dataset:
86
+ type: C-MTEB/CLSClusteringP2P
87
+ name: MTEB CLSClusteringP2P
88
+ config: default
89
+ split: test
90
+ revision: None
91
+ metrics:
92
+ - type: v_measure
93
+ value: 38.98356815428385
94
+ - task:
95
+ type: Clustering
96
+ dataset:
97
+ type: C-MTEB/CLSClusteringS2S
98
+ name: MTEB CLSClusteringS2S
99
+ config: default
100
+ split: test
101
+ revision: None
102
+ metrics:
103
+ - type: v_measure
104
+ value: 36.04329998232363
105
+ - task:
106
+ type: Reranking
107
+ dataset:
108
+ type: C-MTEB/CMedQAv1-reranking
109
+ name: MTEB CMedQAv1
110
+ config: default
111
+ split: test
112
+ revision: None
113
+ metrics:
114
+ - type: map
115
+ value: 84.79178620472841
116
+ - type: mrr
117
+ value: 87.1725
118
+ - task:
119
+ type: Reranking
120
+ dataset:
121
+ type: C-MTEB/CMedQAv2-reranking
122
+ name: MTEB CMedQAv2
123
+ config: default
124
+ split: test
125
+ revision: None
126
+ metrics:
127
+ - type: map
128
+ value: 84.89085057036931
129
+ - type: mrr
130
+ value: 87.46011904761905
131
+ - task:
132
+ type: Retrieval
133
+ dataset:
134
+ type: C-MTEB/CmedqaRetrieval
135
+ name: MTEB CmedqaRetrieval
136
+ config: default
137
+ split: dev
138
+ revision: None
139
+ metrics:
140
+ - type: map_at_1
141
+ value: 23.351
142
+ - type: map_at_10
143
+ value: 35.284
144
+ - type: map_at_100
145
+ value: 37.222
146
+ - type: map_at_1000
147
+ value: 37.338
148
+ - type: map_at_3
149
+ value: 31.135
150
+ - type: map_at_5
151
+ value: 33.445
152
+ - type: mrr_at_1
153
+ value: 36.134
154
+ - type: mrr_at_10
155
+ value: 44.282
156
+ - type: mrr_at_100
157
+ value: 45.31
158
+ - type: mrr_at_1000
159
+ value: 45.356
160
+ - type: mrr_at_3
161
+ value: 41.615
162
+ - type: mrr_at_5
163
+ value: 43.169000000000004
164
+ - type: ndcg_at_1
165
+ value: 36.134
166
+ - type: ndcg_at_10
167
+ value: 41.982
168
+ - type: ndcg_at_100
169
+ value: 49.672
170
+ - type: ndcg_at_1000
171
+ value: 51.669
172
+ - type: ndcg_at_3
173
+ value: 36.521
174
+ - type: ndcg_at_5
175
+ value: 38.858
176
+ - type: precision_at_1
177
+ value: 36.134
178
+ - type: precision_at_10
179
+ value: 9.515
180
+ - type: precision_at_100
181
+ value: 1.5779999999999998
182
+ - type: precision_at_1000
183
+ value: 0.183
184
+ - type: precision_at_3
185
+ value: 20.747
186
+ - type: precision_at_5
187
+ value: 15.229000000000001
188
+ - type: recall_at_1
189
+ value: 23.351
190
+ - type: recall_at_10
191
+ value: 52.798
192
+ - type: recall_at_100
193
+ value: 84.806
194
+ - type: recall_at_1000
195
+ value: 98.172
196
+ - type: recall_at_3
197
+ value: 36.513
198
+ - type: recall_at_5
199
+ value: 43.701
200
+ - task:
201
+ type: PairClassification
202
+ dataset:
203
+ type: C-MTEB/CMNLI
204
+ name: MTEB Cmnli
205
+ config: default
206
+ split: validation
207
+ revision: None
208
+ metrics:
209
+ - type: cos_sim_accuracy
210
+ value: 74.74443776307878
211
+ - type: cos_sim_ap
212
+ value: 83.8325812952643
213
+ - type: cos_sim_f1
214
+ value: 76.64593609264422
215
+ - type: cos_sim_precision
216
+ value: 70.78629431570607
217
+ - type: cos_sim_recall
218
+ value: 83.56324526537293
219
+ - type: dot_accuracy
220
+ value: 73.91461214672279
221
+ - type: dot_ap
222
+ value: 82.8769105611689
223
+ - type: dot_f1
224
+ value: 75.93478260869564
225
+ - type: dot_precision
226
+ value: 70.95267113548648
227
+ - type: dot_recall
228
+ value: 81.66939443535188
229
+ - type: euclidean_accuracy
230
+ value: 74.94888755261574
231
+ - type: euclidean_ap
232
+ value: 84.00606427216371
233
+ - type: euclidean_f1
234
+ value: 76.78665681410322
235
+ - type: euclidean_precision
236
+ value: 69.99615088529639
237
+ - type: euclidean_recall
238
+ value: 85.0362403553893
239
+ - type: manhattan_accuracy
240
+ value: 74.92483463619965
241
+ - type: manhattan_ap
242
+ value: 83.97546171072935
243
+ - type: manhattan_f1
244
+ value: 76.57105320779506
245
+ - type: manhattan_precision
246
+ value: 71.99917644636606
247
+ - type: manhattan_recall
248
+ value: 81.7629179331307
249
+ - type: max_accuracy
250
+ value: 74.94888755261574
251
+ - type: max_ap
252
+ value: 84.00606427216371
253
+ - type: max_f1
254
+ value: 76.78665681410322
255
+ - task:
256
+ type: Retrieval
257
+ dataset:
258
+ type: C-MTEB/CovidRetrieval
259
+ name: MTEB CovidRetrieval
260
+ config: default
261
+ split: dev
262
+ revision: None
263
+ metrics:
264
+ - type: map_at_1
265
+ value: 73.34
266
+ - type: map_at_10
267
+ value: 81.462
268
+ - type: map_at_100
269
+ value: 81.661
270
+ - type: map_at_1000
271
+ value: 81.663
272
+ - type: map_at_3
273
+ value: 79.742
274
+ - type: map_at_5
275
+ value: 80.886
276
+ - type: mrr_at_1
277
+ value: 73.656
278
+ - type: mrr_at_10
279
+ value: 81.432
280
+ - type: mrr_at_100
281
+ value: 81.632
282
+ - type: mrr_at_1000
283
+ value: 81.634
284
+ - type: mrr_at_3
285
+ value: 79.786
286
+ - type: mrr_at_5
287
+ value: 80.87100000000001
288
+ - type: ndcg_at_1
289
+ value: 73.656
290
+ - type: ndcg_at_10
291
+ value: 85.036
292
+ - type: ndcg_at_100
293
+ value: 85.83
294
+ - type: ndcg_at_1000
295
+ value: 85.884
296
+ - type: ndcg_at_3
297
+ value: 81.669
298
+ - type: ndcg_at_5
299
+ value: 83.699
300
+ - type: precision_at_1
301
+ value: 73.656
302
+ - type: precision_at_10
303
+ value: 9.715
304
+ - type: precision_at_100
305
+ value: 1.005
306
+ - type: precision_at_1000
307
+ value: 0.101
308
+ - type: precision_at_3
309
+ value: 29.293999999999997
310
+ - type: precision_at_5
311
+ value: 18.587999999999997
312
+ - type: recall_at_1
313
+ value: 73.34
314
+ - type: recall_at_10
315
+ value: 96.101
316
+ - type: recall_at_100
317
+ value: 99.473
318
+ - type: recall_at_1000
319
+ value: 99.895
320
+ - type: recall_at_3
321
+ value: 87.197
322
+ - type: recall_at_5
323
+ value: 92.044
324
+ - task:
325
+ type: Retrieval
326
+ dataset:
327
+ type: C-MTEB/DuRetrieval
328
+ name: MTEB DuRetrieval
329
+ config: default
330
+ split: dev
331
+ revision: None
332
+ metrics:
333
+ - type: map_at_1
334
+ value: 26.351999999999997
335
+ - type: map_at_10
336
+ value: 80.977
337
+ - type: map_at_100
338
+ value: 83.795
339
+ - type: map_at_1000
340
+ value: 83.836
341
+ - type: map_at_3
342
+ value: 56.388000000000005
343
+ - type: map_at_5
344
+ value: 71.089
345
+ - type: mrr_at_1
346
+ value: 90.75
347
+ - type: mrr_at_10
348
+ value: 93.648
349
+ - type: mrr_at_100
350
+ value: 93.71000000000001
351
+ - type: mrr_at_1000
352
+ value: 93.714
353
+ - type: mrr_at_3
354
+ value: 93.43299999999999
355
+ - type: mrr_at_5
356
+ value: 93.57600000000001
357
+ - type: ndcg_at_1
358
+ value: 90.75
359
+ - type: ndcg_at_10
360
+ value: 87.971
361
+ - type: ndcg_at_100
362
+ value: 90.594
363
+ - type: ndcg_at_1000
364
+ value: 90.998
365
+ - type: ndcg_at_3
366
+ value: 87.224
367
+ - type: ndcg_at_5
368
+ value: 86.032
369
+ - type: precision_at_1
370
+ value: 90.75
371
+ - type: precision_at_10
372
+ value: 41.975
373
+ - type: precision_at_100
374
+ value: 4.807
375
+ - type: precision_at_1000
376
+ value: 0.48900000000000005
377
+ - type: precision_at_3
378
+ value: 78.167
379
+ - type: precision_at_5
380
+ value: 65.85
381
+ - type: recall_at_1
382
+ value: 26.351999999999997
383
+ - type: recall_at_10
384
+ value: 88.714
385
+ - type: recall_at_100
386
+ value: 97.367
387
+ - type: recall_at_1000
388
+ value: 99.589
389
+ - type: recall_at_3
390
+ value: 58.483
391
+ - type: recall_at_5
392
+ value: 75.359
393
+ - task:
394
+ type: Retrieval
395
+ dataset:
396
+ type: C-MTEB/EcomRetrieval
397
+ name: MTEB EcomRetrieval
398
+ config: default
399
+ split: dev
400
+ revision: None
401
+ metrics:
402
+ - type: map_at_1
403
+ value: 46.2
404
+ - type: map_at_10
405
+ value: 56.548
406
+ - type: map_at_100
407
+ value: 57.172
408
+ - type: map_at_1000
409
+ value: 57.192
410
+ - type: map_at_3
411
+ value: 53.983000000000004
412
+ - type: map_at_5
413
+ value: 55.408
414
+ - type: mrr_at_1
415
+ value: 46.2
416
+ - type: mrr_at_10
417
+ value: 56.548
418
+ - type: mrr_at_100
419
+ value: 57.172
420
+ - type: mrr_at_1000
421
+ value: 57.192
422
+ - type: mrr_at_3
423
+ value: 53.983000000000004
424
+ - type: mrr_at_5
425
+ value: 55.408
426
+ - type: ndcg_at_1
427
+ value: 46.2
428
+ - type: ndcg_at_10
429
+ value: 61.912
430
+ - type: ndcg_at_100
431
+ value: 64.834
432
+ - type: ndcg_at_1000
433
+ value: 65.36
434
+ - type: ndcg_at_3
435
+ value: 56.577
436
+ - type: ndcg_at_5
437
+ value: 59.15899999999999
438
+ - type: precision_at_1
439
+ value: 46.2
440
+ - type: precision_at_10
441
+ value: 7.89
442
+ - type: precision_at_100
443
+ value: 0.923
444
+ - type: precision_at_1000
445
+ value: 0.096
446
+ - type: precision_at_3
447
+ value: 21.367
448
+ - type: precision_at_5
449
+ value: 14.08
450
+ - type: recall_at_1
451
+ value: 46.2
452
+ - type: recall_at_10
453
+ value: 78.9
454
+ - type: recall_at_100
455
+ value: 92.30000000000001
456
+ - type: recall_at_1000
457
+ value: 96.39999999999999
458
+ - type: recall_at_3
459
+ value: 64.1
460
+ - type: recall_at_5
461
+ value: 70.39999999999999
462
+ - task:
463
+ type: Classification
464
+ dataset:
465
+ type: C-MTEB/IFlyTek-classification
466
+ name: MTEB IFlyTek
467
+ config: default
468
+ split: validation
469
+ revision: None
470
+ metrics:
471
+ - type: accuracy
472
+ value: 44.24778761061947
473
+ - type: f1
474
+ value: 36.410133889743115
475
+ - task:
476
+ type: Classification
477
+ dataset:
478
+ type: C-MTEB/JDReview-classification
479
+ name: MTEB JDReview
480
+ config: default
481
+ split: test
482
+ revision: None
483
+ metrics:
484
+ - type: accuracy
485
+ value: 86.09756097560975
486
+ - type: ap
487
+ value: 53.85203082125175
488
+ - type: f1
489
+ value: 80.61318243910114
490
+ - task:
491
+ type: STS
492
+ dataset:
493
+ type: C-MTEB/LCQMC
494
+ name: MTEB LCQMC
495
+ config: default
496
+ split: test
497
+ revision: None
498
+ metrics:
499
+ - type: cos_sim_pearson
500
+ value: 70.49411615067606
501
+ - type: cos_sim_spearman
502
+ value: 75.80607876548899
503
+ - type: euclidean_pearson
504
+ value: 74.67002802430761
505
+ - type: euclidean_spearman
506
+ value: 76.00290181304833
507
+ - type: manhattan_pearson
508
+ value: 74.66745498313495
509
+ - type: manhattan_spearman
510
+ value: 76.00460005446307
511
+ - task:
512
+ type: Retrieval
513
+ dataset:
514
+ type: C-MTEB/MMarcoRetrieval
515
+ name: MTEB MMarcoRetrieval
516
+ config: default
517
+ split: dev
518
+ revision: None
519
+ metrics:
520
+ - type: map_at_1
521
+ value: 64.388
522
+ - type: map_at_10
523
+ value: 73.94800000000001
524
+ - type: map_at_100
525
+ value: 74.279
526
+ - type: map_at_1000
527
+ value: 74.29
528
+ - type: map_at_3
529
+ value: 72.017
530
+ - type: map_at_5
531
+ value: 73.29599999999999
532
+ - type: mrr_at_1
533
+ value: 66.648
534
+ - type: mrr_at_10
535
+ value: 74.59599999999999
536
+ - type: mrr_at_100
537
+ value: 74.885
538
+ - type: mrr_at_1000
539
+ value: 74.896
540
+ - type: mrr_at_3
541
+ value: 72.88900000000001
542
+ - type: mrr_at_5
543
+ value: 74.017
544
+ - type: ndcg_at_1
545
+ value: 66.648
546
+ - type: ndcg_at_10
547
+ value: 77.833
548
+ - type: ndcg_at_100
549
+ value: 79.306
550
+ - type: ndcg_at_1000
551
+ value: 79.605
552
+ - type: ndcg_at_3
553
+ value: 74.18599999999999
554
+ - type: ndcg_at_5
555
+ value: 76.352
556
+ - type: precision_at_1
557
+ value: 66.648
558
+ - type: precision_at_10
559
+ value: 9.472999999999999
560
+ - type: precision_at_100
561
+ value: 1.0210000000000001
562
+ - type: precision_at_1000
563
+ value: 0.105
564
+ - type: precision_at_3
565
+ value: 28.055999999999997
566
+ - type: precision_at_5
567
+ value: 17.974
568
+ - type: recall_at_1
569
+ value: 64.388
570
+ - type: recall_at_10
571
+ value: 89.143
572
+ - type: recall_at_100
573
+ value: 95.794
574
+ - type: recall_at_1000
575
+ value: 98.152
576
+ - type: recall_at_3
577
+ value: 79.55499999999999
578
+ - type: recall_at_5
579
+ value: 84.694
580
+ - task:
581
+ type: Classification
582
+ dataset:
583
+ type: mteb/amazon_massive_intent
584
+ name: MTEB MassiveIntentClassification (zh-CN)
585
+ config: zh-CN
586
+ split: test
587
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
588
+ metrics:
589
+ - type: accuracy
590
+ value: 67.99932750504371
591
+ - type: f1
592
+ value: 66.07217986916525
593
+ - task:
594
+ type: Classification
595
+ dataset:
596
+ type: mteb/amazon_massive_scenario
597
+ name: MTEB MassiveScenarioClassification (zh-CN)
598
+ config: zh-CN
599
+ split: test
600
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
601
+ metrics:
602
+ - type: accuracy
603
+ value: 72.08137188971082
604
+ - type: f1
605
+ value: 72.42255159515156
606
+ - task:
607
+ type: Retrieval
608
+ dataset:
609
+ type: C-MTEB/MedicalRetrieval
610
+ name: MTEB MedicalRetrieval
611
+ config: default
612
+ split: dev
613
+ revision: None
614
+ metrics:
615
+ - type: map_at_1
616
+ value: 49.6
617
+ - type: map_at_10
618
+ value: 56.04
619
+ - type: map_at_100
620
+ value: 56.584999999999994
621
+ - type: map_at_1000
622
+ value: 56.637
623
+ - type: map_at_3
624
+ value: 54.7
625
+ - type: map_at_5
626
+ value: 55.505
627
+ - type: mrr_at_1
628
+ value: 49.7
629
+ - type: mrr_at_10
630
+ value: 56.094
631
+ - type: mrr_at_100
632
+ value: 56.638999999999996
633
+ - type: mrr_at_1000
634
+ value: 56.691
635
+ - type: mrr_at_3
636
+ value: 54.75
637
+ - type: mrr_at_5
638
+ value: 55.54
639
+ - type: ndcg_at_1
640
+ value: 49.6
641
+ - type: ndcg_at_10
642
+ value: 59.038000000000004
643
+ - type: ndcg_at_100
644
+ value: 61.964
645
+ - type: ndcg_at_1000
646
+ value: 63.482000000000006
647
+ - type: ndcg_at_3
648
+ value: 56.297
649
+ - type: ndcg_at_5
650
+ value: 57.743
651
+ - type: precision_at_1
652
+ value: 49.6
653
+ - type: precision_at_10
654
+ value: 6.84
655
+ - type: precision_at_100
656
+ value: 0.828
657
+ - type: precision_at_1000
658
+ value: 0.095
659
+ - type: precision_at_3
660
+ value: 20.3
661
+ - type: precision_at_5
662
+ value: 12.879999999999999
663
+ - type: recall_at_1
664
+ value: 49.6
665
+ - type: recall_at_10
666
+ value: 68.4
667
+ - type: recall_at_100
668
+ value: 82.8
669
+ - type: recall_at_1000
670
+ value: 95.1
671
+ - type: recall_at_3
672
+ value: 60.9
673
+ - type: recall_at_5
674
+ value: 64.4
675
+ - task:
676
+ type: Reranking
677
+ dataset:
678
+ type: C-MTEB/Mmarco-reranking
679
+ name: MTEB MMarcoReranking
680
+ config: default
681
+ split: dev
682
+ revision: None
683
+ metrics:
684
+ - type: map
685
+ value: 27.274633976199482
686
+ - type: mrr
687
+ value: 25.85952380952381
688
+ - task:
689
+ type: Classification
690
+ dataset:
691
+ type: C-MTEB/MultilingualSentiment-classification
692
+ name: MTEB MultilingualSentiment
693
+ config: default
694
+ split: validation
695
+ revision: None
696
+ metrics:
697
+ - type: accuracy
698
+ value: 70.15
699
+ - type: f1
700
+ value: 70.12595878910165
701
+ - task:
702
+ type: PairClassification
703
+ dataset:
704
+ type: C-MTEB/OCNLI
705
+ name: MTEB Ocnli
706
+ config: default
707
+ split: validation
708
+ revision: None
709
+ metrics:
710
+ - type: cos_sim_accuracy
711
+ value: 68.05630752571737
712
+ - type: cos_sim_ap
713
+ value: 72.9224765568519
714
+ - type: cos_sim_f1
715
+ value: 72.97297297297295
716
+ - type: cos_sim_precision
717
+ value: 62.1380846325167
718
+ - type: cos_sim_recall
719
+ value: 88.3843717001056
720
+ - type: dot_accuracy
721
+ value: 68.11044937736871
722
+ - type: dot_ap
723
+ value: 72.84095585142163
724
+ - type: dot_f1
725
+ value: 72.59574468085107
726
+ - type: dot_precision
727
+ value: 60.79828937990022
728
+ - type: dot_recall
729
+ value: 90.07391763463569
730
+ - type: euclidean_accuracy
731
+ value: 67.73145641580942
732
+ - type: euclidean_ap
733
+ value: 72.8584903276338
734
+ - type: euclidean_f1
735
+ value: 72.82095319879778
736
+ - type: euclidean_precision
737
+ value: 61.3603473227207
738
+ - type: euclidean_recall
739
+ value: 89.54593453009504
740
+ - type: manhattan_accuracy
741
+ value: 67.56903086085543
742
+ - type: manhattan_ap
743
+ value: 72.81719990959621
744
+ - type: manhattan_f1
745
+ value: 72.95855560114896
746
+ - type: manhattan_precision
747
+ value: 59.664429530201346
748
+ - type: manhattan_recall
749
+ value: 93.8753959873284
750
+ - type: max_accuracy
751
+ value: 68.11044937736871
752
+ - type: max_ap
753
+ value: 72.9224765568519
754
+ - type: max_f1
755
+ value: 72.97297297297295
756
+ - task:
757
+ type: Classification
758
+ dataset:
759
+ type: C-MTEB/OnlineShopping-classification
760
+ name: MTEB OnlineShopping
761
+ config: default
762
+ split: test
763
+ revision: None
764
+ metrics:
765
+ - type: accuracy
766
+ value: 90.27
767
+ - type: ap
768
+ value: 87.25468287842568
769
+ - type: f1
770
+ value: 90.24230569233008
771
+ - task:
772
+ type: STS
773
+ dataset:
774
+ type: C-MTEB/PAWSX
775
+ name: MTEB PAWSX
776
+ config: default
777
+ split: test
778
+ revision: None
779
+ metrics:
780
+ - type: cos_sim_pearson
781
+ value: 34.445576951449894
782
+ - type: cos_sim_spearman
783
+ value: 38.3120125820568
784
+ - type: euclidean_pearson
785
+ value: 38.80156903904639
786
+ - type: euclidean_spearman
787
+ value: 38.240808371401656
788
+ - type: manhattan_pearson
789
+ value: 38.77317222891622
790
+ - type: manhattan_spearman
791
+ value: 38.230008722746646
792
+ - task:
793
+ type: STS
794
+ dataset:
795
+ type: C-MTEB/QBQTC
796
+ name: MTEB QBQTC
797
+ config: default
798
+ split: test
799
+ revision: None
800
+ metrics:
801
+ - type: cos_sim_pearson
802
+ value: 37.990494014067295
803
+ - type: cos_sim_spearman
804
+ value: 38.218416274161385
805
+ - type: euclidean_pearson
806
+ value: 35.91543518481725
807
+ - type: euclidean_spearman
808
+ value: 37.34947320962178
809
+ - type: manhattan_pearson
810
+ value: 35.90653204921896
811
+ - type: manhattan_spearman
812
+ value: 37.3484819621432
813
+ - task:
814
+ type: STS
815
+ dataset:
816
+ type: mteb/sts22-crosslingual-sts
817
+ name: MTEB STS22 (zh)
818
+ config: zh
819
+ split: test
820
+ revision: None
821
+ metrics:
822
+ - type: cos_sim_pearson
823
+ value: 66.10227125673059
824
+ - type: cos_sim_spearman
825
+ value: 66.65529695940144
826
+ - type: euclidean_pearson
827
+ value: 64.41045931064728
828
+ - type: euclidean_spearman
829
+ value: 66.48371335308076
830
+ - type: manhattan_pearson
831
+ value: 64.40881380301438
832
+ - type: manhattan_spearman
833
+ value: 66.4530857331391
834
+ - task:
835
+ type: STS
836
+ dataset:
837
+ type: C-MTEB/STSB
838
+ name: MTEB STSB
839
+ config: default
840
+ split: test
841
+ revision: None
842
+ metrics:
843
+ - type: cos_sim_pearson
844
+ value: 74.46374847096926
845
+ - type: cos_sim_spearman
846
+ value: 74.42746155066217
847
+ - type: euclidean_pearson
848
+ value: 74.29184569507011
849
+ - type: euclidean_spearman
850
+ value: 74.88985827017852
851
+ - type: manhattan_pearson
852
+ value: 74.28083071864158
853
+ - type: manhattan_spearman
854
+ value: 74.8848458821044
855
+ - task:
856
+ type: Reranking
857
+ dataset:
858
+ type: C-MTEB/T2Reranking
859
+ name: MTEB T2Reranking
860
+ config: default
861
+ split: dev
862
+ revision: None
863
+ metrics:
864
+ - type: map
865
+ value: 66.95528971496414
866
+ - type: mrr
867
+ value: 77.09135312892928
868
+ - task:
869
+ type: Retrieval
870
+ dataset:
871
+ type: C-MTEB/T2Retrieval
872
+ name: MTEB T2Retrieval
873
+ config: default
874
+ split: dev
875
+ revision: None
876
+ metrics:
877
+ - type: map_at_1
878
+ value: 26.531
879
+ - type: map_at_10
880
+ value: 74.504
881
+ - type: map_at_100
882
+ value: 78.321
883
+ - type: map_at_1000
884
+ value: 78.393
885
+ - type: map_at_3
886
+ value: 52.288000000000004
887
+ - type: map_at_5
888
+ value: 64.228
889
+ - type: mrr_at_1
890
+ value: 88.331
891
+ - type: mrr_at_10
892
+ value: 91.044
893
+ - type: mrr_at_100
894
+ value: 91.156
895
+ - type: mrr_at_1000
896
+ value: 91.161
897
+ - type: mrr_at_3
898
+ value: 90.55499999999999
899
+ - type: mrr_at_5
900
+ value: 90.857
901
+ - type: ndcg_at_1
902
+ value: 88.331
903
+ - type: ndcg_at_10
904
+ value: 82.468
905
+ - type: ndcg_at_100
906
+ value: 86.494
907
+ - type: ndcg_at_1000
908
+ value: 87.211
909
+ - type: ndcg_at_3
910
+ value: 83.979
911
+ - type: ndcg_at_5
912
+ value: 82.40899999999999
913
+ - type: precision_at_1
914
+ value: 88.331
915
+ - type: precision_at_10
916
+ value: 41.223
917
+ - type: precision_at_100
918
+ value: 4.984
919
+ - type: precision_at_1000
920
+ value: 0.515
921
+ - type: precision_at_3
922
+ value: 73.603
923
+ - type: precision_at_5
924
+ value: 61.634
925
+ - type: recall_at_1
926
+ value: 26.531
927
+ - type: recall_at_10
928
+ value: 81.432
929
+ - type: recall_at_100
930
+ value: 94.404
931
+ - type: recall_at_1000
932
+ value: 98.085
933
+ - type: recall_at_3
934
+ value: 54.055
935
+ - type: recall_at_5
936
+ value: 67.726
937
+ - task:
938
+ type: Classification
939
+ dataset:
940
+ type: C-MTEB/TNews-classification
941
+ name: MTEB TNews
942
+ config: default
943
+ split: validation
944
+ revision: None
945
+ metrics:
946
+ - type: accuracy
947
+ value: 46.543
948
+ - type: f1
949
+ value: 45.26659807296124
950
+ - task:
951
+ type: Clustering
952
+ dataset:
953
+ type: C-MTEB/ThuNewsClusteringP2P
954
+ name: MTEB ThuNewsClusteringP2P
955
+ config: default
956
+ split: test
957
+ revision: None
958
+ metrics:
959
+ - type: v_measure
960
+ value: 60.575199180159586
961
+ - task:
962
+ type: Clustering
963
+ dataset:
964
+ type: C-MTEB/ThuNewsClusteringS2S
965
+ name: MTEB ThuNewsClusteringS2S
966
+ config: default
967
+ split: test
968
+ revision: None
969
+ metrics:
970
+ - type: v_measure
971
+ value: 52.55759510188472
972
+ - task:
973
+ type: Retrieval
974
+ dataset:
975
+ type: C-MTEB/VideoRetrieval
976
+ name: MTEB VideoRetrieval
977
+ config: default
978
+ split: dev
979
+ revision: None
980
+ metrics:
981
+ - type: map_at_1
982
+ value: 56.2
983
+ - type: map_at_10
984
+ value: 66.497
985
+ - type: map_at_100
986
+ value: 66.994
987
+ - type: map_at_1000
988
+ value: 67.012
989
+ - type: map_at_3
990
+ value: 64.483
991
+ - type: map_at_5
992
+ value: 65.783
993
+ - type: mrr_at_1
994
+ value: 56.2
995
+ - type: mrr_at_10
996
+ value: 66.497
997
+ - type: mrr_at_100
998
+ value: 66.994
999
+ - type: mrr_at_1000
1000
+ value: 67.012
1001
+ - type: mrr_at_3
1002
+ value: 64.483
1003
+ - type: mrr_at_5
1004
+ value: 65.783
1005
+ - type: ndcg_at_1
1006
+ value: 56.2
1007
+ - type: ndcg_at_10
1008
+ value: 71.18100000000001
1009
+ - type: ndcg_at_100
1010
+ value: 73.411
1011
+ - type: ndcg_at_1000
1012
+ value: 73.819
1013
+ - type: ndcg_at_3
1014
+ value: 67.137
1015
+ - type: ndcg_at_5
1016
+ value: 69.461
1017
+ - type: precision_at_1
1018
+ value: 56.2
1019
+ - type: precision_at_10
1020
+ value: 8.57
1021
+ - type: precision_at_100
1022
+ value: 0.9570000000000001
1023
+ - type: precision_at_1000
1024
+ value: 0.099
1025
+ - type: precision_at_3
1026
+ value: 24.933
1027
+ - type: precision_at_5
1028
+ value: 16.08
1029
+ - type: recall_at_1
1030
+ value: 56.2
1031
+ - type: recall_at_10
1032
+ value: 85.7
1033
+ - type: recall_at_100
1034
+ value: 95.7
1035
+ - type: recall_at_1000
1036
+ value: 98.8
1037
+ - type: recall_at_3
1038
+ value: 74.8
1039
+ - type: recall_at_5
1040
+ value: 80.4
1041
+ - task:
1042
+ type: Classification
1043
+ dataset:
1044
+ type: C-MTEB/waimai-classification
1045
+ name: MTEB Waimai
1046
+ config: default
1047
+ split: test
1048
+ revision: None
1049
+ metrics:
1050
+ - type: accuracy
1051
+ value: 85.54
1052
+ - type: ap
1053
+ value: 68.02479661585015
1054
+ - type: f1
1055
+ value: 83.87871999963863
1056
  ---
1057
+
1058
+
1059
+ ## piccolo-large-zh