Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

organcmnist-swin-base-finetuned

This model is a fine-tuned version of microsoft/swin-large-patch4-window7-224-in22k on the medmnist-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2582
  • Accuracy: 0.9317
  • Precision: 0.9295
  • Recall: 0.9177
  • F1: 0.9229

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.7563 0.9988 203 0.1859 0.9365 0.9432 0.9127 0.9201
0.6145 1.9975 406 0.1260 0.9640 0.9630 0.9608 0.9600
0.6476 2.9963 609 0.0926 0.9774 0.9715 0.9754 0.9723
0.5719 4.0 813 0.0912 0.9770 0.9749 0.9746 0.9740
0.5374 4.9988 1016 0.1281 0.9695 0.9730 0.9690 0.9699
0.5615 5.9975 1219 0.1088 0.9791 0.9839 0.9819 0.9825
0.4959 6.9963 1422 0.1134 0.9741 0.9812 0.9742 0.9768
0.425 8.0 1626 0.1016 0.9808 0.9816 0.9820 0.9815
0.3151 8.9988 1829 0.1368 0.9804 0.9843 0.9832 0.9834
0.3347 9.9877 2030 0.1156 0.9837 0.9853 0.9864 0.9856

Framework versions

  • PEFT 0.11.1
  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for selmamalak/organcmnist-swin-base-finetuned

Adapter
(8)
this model