metadata
base_model: rinna/gemma-2-baku-2b
datasets:
- mc4
- wikipedia
- EleutherAI/pile
- oscar-corpus/colossal-oscar-1.0
- cc100
language:
- ja
- en
library_name: transformers
license: gemma
pipeline_tag: text-generation
tags:
- gemma2
- llama-cpp
- gguf-my-repo
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
inference: false
sehiro/gemma-2-baku-2b-Q4_K_M-GGUF
This model was converted to GGUF format from rinna/gemma-2-baku-2b
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo sehiro/gemma-2-baku-2b-Q4_K_M-GGUF --hf-file gemma-2-baku-2b-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo sehiro/gemma-2-baku-2b-Q4_K_M-GGUF --hf-file gemma-2-baku-2b-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo sehiro/gemma-2-baku-2b-Q4_K_M-GGUF --hf-file gemma-2-baku-2b-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo sehiro/gemma-2-baku-2b-Q4_K_M-GGUF --hf-file gemma-2-baku-2b-q4_k_m.gguf -c 2048