|
--- |
|
datasets: |
|
- roneneldan/TinyStories |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
## We tried to use the huggingface transformers library to recreate the TinyStories models on Consumer GPU using GPT2 Architecture instead of GPT-Neo Architecture orignally used in the paper (https://arxiv.org/abs/2305.07759). Output model is 15mb and has 3 million parameters. |
|
|
|
|
|
|
|
# ------ EXAMPLE USAGE 1 --- |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained("segestic/Tinystories-gpt-0.1-3m") |
|
|
|
model = AutoModelForCausalLM.from_pretrained("segestic/Tinystories-gpt-0.1-3m") |
|
|
|
prompt = "Once upon a time there was" |
|
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt") |
|
#### Generate completion |
|
output = model.generate(input_ids, max_length = 1000, num_beams=1) |
|
#### Decode the completion |
|
output_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
#### Print the generated text |
|
print(output_text) |
|
|
|
|
|
|
|
# ------ EXAMPLE USAGE 2 ------ |
|
## Use a pipeline as a high-level helper |
|
from transformers import pipeline |
|
#### pipeline |
|
pipe = pipeline("text-generation", model="segestic/Tinystories-gpt-0.1-3m") |
|
#### prompt |
|
prompt = "where is the little girl" |
|
#### generate completion |
|
output = pipe(prompt, max_length=1000, num_beams=1) |
|
#### decode the completion |
|
generated_text = output[0]['generated_text'] |
|
#### Print the generated text |
|
print(generated_text) |
|
|
|
|