tabular-playground / README.md
merve's picture
merve HF staff
Update README.md
0613665
metadata
library_name: sklearn
tags:
  - sklearn
  - skops
  - tabular-classification
widget:
  structuredData:
    attribute_0:
      - material_7
      - material_7
      - material_7
    attribute_1:
      - material_8
      - material_8
      - material_6
    attribute_2:
      - 5
      - 5
      - 6
    attribute_3:
      - 8
      - 8
      - 9
    loading:
      - 154.02
      - 108.73
      - 99.84
    measurement_0:
      - 14
      - 4
      - 6
    measurement_1:
      - 6
      - 7
      - 7
    measurement_10:
      - 16.637
      - 16.207
      - 17.17
    measurement_11:
      - 20.719
      - 20.058
      - 20.858
    measurement_12:
      - 12.824
      - 11.898
      - 10.968
    measurement_13:
      - 16.067
      - 13.871
      - 16.448
    measurement_14:
      - 15.181
      - 14.266
      - 15.6
    measurement_15:
      - 18.546
      - 15.734
      - 14.637
    measurement_16:
      - 19.402
      - 16.886
      - 13.86
    measurement_17:
      - 643.086
      - 642.533
      - 673.545
    measurement_2:
      - 6
      - 9
      - 6
    measurement_3:
      - 19.532
      - 18.128
      - NaN
    measurement_4:
      - 11.017
      - 11.866
      - 10.064
    measurement_5:
      - 15.639
      - 17.891
      - 16.287
    measurement_6:
      - 16.709
      - 20.302
      - 17.445
    measurement_7:
      - 10.057
      - NaN
      - 12.117
    measurement_8:
      - 20.201
      - 18.148
      - 20.659
    measurement_9:
      - 11.106
      - 10.221
      - 11.999
    product_code:
      - C
      - C
      - E

Model description

This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset.

Intended uses & limitations

This model is not ready to be used in production.

Training Procedure

Hyperparameters

The model is trained with below hyperparameters.

Click to expand
Hyperparameter Value
memory
steps [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))]
verbose False
transformation ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),
'attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])
model DecisionTreeClassifier(max_depth=4)
transformation__n_jobs
transformation__remainder drop
transformation__sparse_threshold 0.3
transformation__transformer_weights
transformation__transformers [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(),['product_code'])]
transformation__verbose False
transformation__verbose_feature_names_out True
transformation__loading_missing_value_imputer SimpleImputer()
transformation__numerical_missing_value_imputer SimpleImputer()
transformation__attribute_0_encoder OneHotEncoder()
transformation__attribute_1_encoder OneHotEncoder()
transformation__product_code_encoder OneHotEncoder()
transformation__loading_missing_value_imputer__add_indicator False
transformation__loading_missing_value_imputer__copy True
transformation__loading_missing_value_imputer__fill_value
transformation__loading_missing_value_imputer__missing_values nan
transformation__loading_missing_value_imputer__strategy mean
transformation__loading_missing_value_imputer__verbose 0
transformation__numerical_missing_value_imputer__add_indicator False
transformation__numerical_missing_value_imputer__copy True
transformation__numerical_missing_value_imputer__fill_value
transformation__numerical_missing_value_imputer__missing_values nan
transformation__numerical_missing_value_imputer__strategy mean
transformation__numerical_missing_value_imputer__verbose 0
transformation__attribute_0_encoder__categories auto
transformation__attribute_0_encoder__drop
transformation__attribute_0_encoder__dtype <class 'numpy.float64'>
transformation__attribute_0_encoder__handle_unknown error
transformation__attribute_0_encoder__sparse True
transformation__attribute_1_encoder__categories auto
transformation__attribute_1_encoder__drop
transformation__attribute_1_encoder__dtype <class 'numpy.float64'>
transformation__attribute_1_encoder__handle_unknown error
transformation__attribute_1_encoder__sparse True
transformation__product_code_encoder__categories auto
transformation__product_code_encoder__drop
transformation__product_code_encoder__dtype <class 'numpy.float64'>
transformation__product_code_encoder__handle_unknown error
transformation__product_code_encoder__sparse True
model__ccp_alpha 0.0
model__class_weight
model__criterion gini
model__max_depth 4
model__max_features
model__max_leaf_nodes
model__min_impurity_decrease 0.0
model__min_samples_leaf 1
model__min_samples_split 2
model__min_weight_fraction_leaf 0.0
model__random_state
model__splitter best

Model Plot

The model plot is below.

Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])
Please rerun this cell to show the HTML repr or trust the notebook.

Evaluation Results

You can find the details about evaluation process and the evaluation results.

Metric Value
accuracy 0.7888
f1 score 0.7888

How to Get Started with the Model

Use the code below to get started with the model.

Click to expand
import pickle 
with open(decision-tree-playground-kaggle/model.pkl, 'rb') as file: 
    clf = pickle.load(file)

Model Card Authors

This model card is written by following authors:

huggingface

Model Card Contact

You can contact the model card authors through following channels: [More Information Needed]

Citation

Below you can find information related to citation.

BibTeX:

[More Information Needed]

Tree Plot Tree Plot

Confusion Matrix Confusion Matrix