whisper-small-bn-09092023

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0498
  • Wer: 7.7181

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2500
  • training_steps: 8000

Training results

Training Loss Epoch Step Validation Loss Wer
0.4968 0.16 400 0.3922 44.0283
0.2059 0.32 800 0.1848 27.1190
0.1486 0.48 1200 0.1359 20.7105
0.1203 0.64 1600 0.1094 16.8171
0.1032 0.79 2000 0.0938 14.5648
0.0912 0.95 2400 0.0816 12.6067
0.0778 1.11 2800 0.0749 11.5556
0.0717 1.27 3200 0.0686 10.8017
0.0676 1.43 3600 0.0639 9.7786
0.0641 1.59 4000 0.0607 9.4620
0.0622 1.75 4400 0.0588 9.2326
0.0597 1.91 4800 0.0561 8.8085
0.0498 2.07 5200 0.0546 8.3926
0.0493 2.23 5600 0.0539 8.3443
0.0483 2.38 6000 0.0525 8.1459
0.0478 2.54 6400 0.0518 8.0740
0.0472 2.7 6800 0.0510 7.9834
0.0463 2.86 7200 0.0502 7.7784
0.0439 3.02 7600 0.0499 7.7532
0.0407 3.18 8000 0.0498 7.7181

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sazzad-sit/whisper-small-bn-09092023

Finetuned
(2210)
this model