saurabhy27-outcomes's picture
End of training
d0036f3 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - OUTCOMESAI/medical_n_common_speech_corpus_50_50
metrics:
  - wer
model-index:
  - name: Whisper Large V3 Common n Medical 50 50
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: OUTCOMESAI/medical_n_common_speech_corpus_50_50 en
          type: OUTCOMESAI/medical_n_common_speech_corpus_50_50
        metrics:
          - name: Wer
            type: wer
            value: 5.218643517767322

Whisper Large V3 Common n Medical 50 50

This model is a fine-tuned version of openai/whisper-large-v3 on the OUTCOMESAI/medical_n_common_speech_corpus_50_50 en dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3196
  • Wer: 5.2186

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.126 0.0969 250 0.3694 5.6601
4.367 0.1938 500 0.3586 5.8156
4.1514 0.2907 750 0.3511 5.8839
3.962 0.3876 1000 0.3450 5.7805
3.9038 0.4845 1250 0.3403 6.1746
3.8313 0.5814 1500 0.3359 5.9738
3.7778 0.6783 1750 0.3333 5.9218
3.7421 0.7752 2000 0.3306 6.1327
3.7367 0.8721 2250 0.3281 5.6561
3.6878 0.9690 2500 0.3257 5.5154
3.6769 1.0659 2750 0.3242 5.4803
3.6508 1.1628 3000 0.3235 5.4634
3.6292 1.2597 3250 0.3220 5.3512
3.6179 1.3566 3500 0.3210 5.2254
3.6032 1.4535 3750 0.3206 5.2207
3.5922 1.5504 4000 0.3201 5.3038
3.5743 1.6473 4250 0.3198 5.2633
3.5882 1.7442 4500 0.3198 5.2254
3.6021 1.8411 4750 0.3196 5.2186
3.5865 1.9380 5000 0.3193 5.2213

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 3.2.1.dev0
  • Tokenizers 0.21.0