Uploaded model

  • Developed by: saucam
  • License: apache-2.0
  • Finetuned from model : google/gemma-7b

This is a finetuned version of gemma-7b on sarvamai/samvaad-hi-v1 hindi dataset using chatml format.

Inference

We can use unsloth for fast inference

from unsloth import FastLanguageModel
from unsloth.chat_templates import get_chat_template
from unsloth.chat_templates import get_chat_template

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "saucam/gemma-samvaad-7b", # YOUR MODEL YOU USED FOR TRAINING
    max_seq_length = 2048,
    dtype = None,
    load_in_4bit = False,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference

tokenizer = get_chat_template(
    tokenizer,
    chat_template = "chatml",
    map_eos_token = True, # Maps <|im_end|> to </s> instead
)

FastLanguageModel.for_inference(model) # Enable native 2x faster inference

messages = [
    {"role": "user", "content": "(9+1)+(5+0). इसे 3 चरणों में हल करें."},
]
inputs = tokenizer.apply_chat_template(
    messages,
    tokenize = True,
    add_generation_prompt = True, # Must add for generation
    return_tensors = "pt",
).to("cuda")

outputs = model.generate(input_ids = inputs, max_new_tokens = 512, use_cache = True)
out = tokenizer.batch_decode(outputs)
print(out)
['<bos><|im_start|>user\n(9+1)+(5+0). इसे 3 चरणों में हल करें.<|im_end|>\n
<|im_start|>assistant\n(9+1)+(5+0) को 3 चरणों में हल करने के लिए, हम इसे छोटे भागों में विभाजित कर सकते हैं। पहले चरण में, हम 9 को 1 से जोड़ते हैं, जो 10 देता है। दूसरे चरण में, हम 5 को 0 से जोड़ते हैं, जो 5 देता है। तीसरे चरण में, हम 10 को 5 से जोड़ते हैं, जो 15 देता है। इसलिए, (9+1)+(5+0) का परिणाम 15 है।<|im_end|>

This gemma model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for saucam/gemma-samvaad-7b

Base model

google/gemma-7b
Finetuned
(97)
this model