metadata
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: gpt2-finetuned-justification-v3
results: []
gpt2-finetuned-justification-v3
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2415
- Rouge1: 30.8957
- Rouge2: 13.5597
- Rougel: 22.4384
- Rougelsum: 28.2668
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
No log | 1.0 | 338 | 0.1980 | 30.0775 | 13.8145 | 22.3863 | 28.0341 |
0.226 | 2.0 | 676 | 0.1972 | 28.9676 | 13.7684 | 21.8084 | 26.6768 |
0.1594 | 3.0 | 1014 | 0.2007 | 29.8576 | 13.3727 | 22.1581 | 27.5726 |
0.1594 | 4.0 | 1352 | 0.2071 | 32.2090 | 13.7848 | 22.8787 | 29.0171 |
0.1259 | 5.0 | 1690 | 0.2146 | 28.5240 | 13.5821 | 21.4908 | 26.2550 |
0.1046 | 6.0 | 2028 | 0.2211 | 26.1623 | 13.1641 | 21.5936 | 25.0346 |
0.1046 | 7.0 | 2366 | 0.2294 | 28.7169 | 13.4858 | 21.1068 | 26.1213 |
0.0894 | 8.0 | 2704 | 0.2355 | 30.8957 | 13.5597 | 22.4384 | 28.2668 |
0.0785 | 9.0 | 3042 | 0.2398 | 30.8957 | 13.5597 | 22.4384 | 28.2668 |
0.0785 | 10.0 | 3380 | 0.2415 | 30.8957 | 13.5597 | 22.4384 | 28.2668 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.2.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.2