phi-3-mini-LoRA

This model is a fine-tuned version of microsoft/Phi-3-mini-128k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2692

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.7153 0.1766 100 1.4475
1.429 0.3532 200 1.4079
1.3977 0.5298 300 1.3931
1.3835 0.7064 400 1.3778
1.3612 0.8830 500 1.3640
1.3483 1.0596 600 1.3483
1.3115 1.2362 700 1.3340
1.2945 1.4128 800 1.3180
1.2829 1.5894 900 1.3074
1.2691 1.7660 1000 1.2954
1.26 1.9426 1100 1.2865
1.2259 2.1192 1200 1.2805
1.2117 2.2958 1300 1.2761
1.2001 2.4724 1400 1.2722
1.2035 2.6490 1500 1.2697
1.1836 2.8256 1600 1.2692

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for satyakada-iv/phi-3-mini-LoRA-de

Adapter
(289)
this model