SentenceTransformer based on nreimers/MiniLM-L6-H384-uncased

This is a sentence-transformers model finetuned from nreimers/MiniLM-L6-H384-uncased. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nreimers/MiniLM-L6-H384-uncased
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Summarizing the Evidence on the International Trade in Illegal Wildlife',
    'The global trade in illegal wildlife is a multi-billion dollar industry that threatens biodiversity and acts as a potential avenue for invasive species and disease spread. Despite the broad-sweeping implications of illegal wildlife sales, scientists have yet to describe the scope and scale of the trade. Here, we provide the most thorough and current description of the illegal wildlife trade using 12 years of seizure records compiled by TRAFFIC, the wildlife trade monitoring network. These records comprise 967 seizures including massive quantities of ivory, tiger skins, live reptiles, and other endangered wildlife and wildlife products. Most seizures originate in Southeast Asia, a recently identified hotspot for future emerging infectious diseases. To date, regulation and enforcement have been insufficient to effectively control the global trade in illegal wildlife at national and international scales. Effective control will require a multi-pronged approach including community-scale education and empowering local people to value wildlife, coordinated international regulation, and a greater allocation of national resources to on-the-ground enforcement.',
    'This paper proposes a method to represent classifiers or learned regression functions using an OWL ontology. Also proposed are methods for finding an appropriate learned function to answer a simple query. The ontology standardizes variable names and dependence properties, so that feature values can be given by users or found on the semantic web.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 730,454 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 5 tokens
    • mean: 15.55 tokens
    • max: 41 tokens
    • min: 21 tokens
    • mean: 195.91 tokens
    • max: 512 tokens
  • Samples:
    sentence_0 sentence_1
    A parallel algorithm for constructing independent spanning trees in twisted cubes A long-standing conjecture mentions that a kk-connected graph GG admits kk independent spanning trees (ISTs for short) rooted at an arbitrary node of GG. An nn-dimensional twisted cube, denoted by TQnTQn, is a variation of hypercube with connectivity nn and has many features superior to those of hypercube. Yang (2010) first proposed an algorithm to construct nn edge-disjoint spanning trees in TQnTQn for any odd integer n⩾3n⩾3 and showed that half of them are ISTs. At a later stage, Wang et al. (2012) inferred that the above conjecture in affirmative for TQnTQn by providing an O(NlogN)O(NlogN) time algorithm to construct nn ISTs, where N=2nN=2n is the number of nodes in TQnTQn. However, this algorithm is executed in a recursive fashion and thus is hard to be parallelized. In this paper, we revisit the problem of constructing ISTs in twisted cubes and present a non-recursive algorithm. Our approach can be fully parallelized to make the use of all nodes of TQnTQn as processors for computation in such a way that each node can determine its parent in all spanning trees directly by referring its address and tree indices in O(logN)O(logN) time.
    A Novel Method for Separating and Locating Multiple Partial Discharge Sources in a Substation To separate and locate multi-partial discharge (PD) sources in a substation, the use of spectrum differences of ultra-high frequency signals radiated from various sources as characteristic parameters has been previously reported. However, the separation success rate was poor when signal-to-noise ratio was low, and the localization result was a coordinate on two-dimensional plane. In this paper, a novel method is proposed to improve the separation rate and the localization accuracy. A directional measuring platform is built using two directional antennas. The time delay (TD) of the signals captured by the antennas is calculated, and TD sequences are obtained by rotating the platform at different angles. The sequences are separated with the TD distribution feature, and the directions of the multi-PD sources are calculated. The PD sources are located by directions using the error probability method. To verify the method, a simulated model with three PD sources was established by XFdtd. Simulation results show that the separation rate is increased from 71% to 95% compared with the previous method, and an accurate three-dimensional localization result was obtained. A field test with two PD sources was carried out, and the sources were separated and located accurately by the proposed method.
    Every ternary permutation constraint satisfaction problem parameterized above average has a kernel with a quadratic number of variables A ternary Permutation-CSP is specified by a subset @P of the symmetric group S"3. An instance of such a problem consists of a set of variables V and a multiset of constraints, which are ordered triples of distinct variables of V. The objective is to find a linear ordering @a of V that maximizes the number of triples whose rearrangement (under @a) follows a permutation in @P. We prove that every ternary Permutation-CSP parameterized above average has a kernel with a quadratic number of variables.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • num_train_epochs: 5
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Click to expand
Epoch Step Training Loss
0.0055 500 1.6701
0.0110 1000 0.8225
0.0164 1500 0.3883
0.0219 2000 0.2685
0.0274 2500 0.2349
0.0329 3000 0.1685
0.0383 3500 0.1409
0.0438 4000 0.1262
0.0493 4500 0.1195
0.0548 5000 0.1044
0.0602 5500 0.0989
0.0657 6000 0.0787
0.0712 6500 0.0895
0.0767 7000 0.0708
0.0821 7500 0.0834
0.0876 8000 0.0634
0.0931 8500 0.0643
0.0986 9000 0.0567
0.1040 9500 0.0646
0.1095 10000 0.0607
0.1150 10500 0.0564
0.1205 11000 0.068
0.1259 11500 0.0536
0.1314 12000 0.0594
0.1369 12500 0.057
0.1424 13000 0.0555
0.1479 13500 0.0485
0.1533 14000 0.0528
0.1588 14500 0.0478
0.1643 15000 0.0586
0.1698 15500 0.0539
0.1752 16000 0.0432
0.1807 16500 0.0542
0.1862 17000 0.0536
0.1917 17500 0.0492
0.1971 18000 0.0427
0.2026 18500 0.0489
0.2081 19000 0.0502
0.2136 19500 0.0432
0.2190 20000 0.0459
0.2245 20500 0.0376
0.2300 21000 0.0489
0.2355 21500 0.0515
0.2409 22000 0.0429
0.2464 22500 0.0417
0.2519 23000 0.0478
0.2574 23500 0.0359
0.2628 24000 0.0452
0.2683 24500 0.0443
0.2738 25000 0.0409
0.2793 25500 0.0421
0.2848 26000 0.0393
0.2902 26500 0.0409
0.2957 27000 0.032
0.3012 27500 0.0468
0.3067 28000 0.0285
0.3121 28500 0.0311
0.3176 29000 0.0304
0.3231 29500 0.0349
0.3286 30000 0.0352
0.3340 30500 0.0367
0.3395 31000 0.0385
0.3450 31500 0.0325
0.3505 32000 0.0302
0.3559 32500 0.0393
0.3614 33000 0.032
0.3669 33500 0.0263
0.3724 34000 0.0343
0.3778 34500 0.0349
0.3833 35000 0.0282
0.3888 35500 0.034
0.3943 36000 0.0376
0.3998 36500 0.0265
0.4052 37000 0.0267
0.4107 37500 0.0241
0.4162 38000 0.033
0.4217 38500 0.0323
0.4271 39000 0.0278
0.4326 39500 0.025
0.4381 40000 0.0363
0.4436 40500 0.0312
0.4490 41000 0.0307
0.4545 41500 0.0305
0.4600 42000 0.028
0.4655 42500 0.0279
0.4709 43000 0.0265
0.4764 43500 0.0262
0.4819 44000 0.0308
0.4874 44500 0.0282
0.4928 45000 0.0243
0.4983 45500 0.0236
0.5038 46000 0.02
0.5093 46500 0.0254
0.5147 47000 0.0275
0.5202 47500 0.0309
0.5257 48000 0.031
0.5312 48500 0.0271
0.5367 49000 0.0218
0.5421 49500 0.0249
0.5476 50000 0.0285
0.5531 50500 0.03
0.5586 51000 0.0284
0.5640 51500 0.0258
0.5695 52000 0.0228
0.5750 52500 0.0305
0.5805 53000 0.0234
0.5859 53500 0.0209
0.5914 54000 0.0341
0.5969 54500 0.0269
0.6024 55000 0.0267
0.6078 55500 0.0245
0.6133 56000 0.0263
0.6188 56500 0.0195
0.6243 57000 0.0209
0.6297 57500 0.0313
0.6352 58000 0.0247
0.6407 58500 0.0285
0.6462 59000 0.0301
0.6516 59500 0.0227
0.6571 60000 0.0235
0.6626 60500 0.0272
0.6681 61000 0.025
0.6736 61500 0.0276
0.6790 62000 0.0289
0.6845 62500 0.0232
0.6900 63000 0.0258
0.6955 63500 0.0254
0.7009 64000 0.0205
0.7064 64500 0.0216
0.7119 65000 0.0304
0.7174 65500 0.0234
0.7228 66000 0.0233
0.7283 66500 0.0239
0.7338 67000 0.0166
0.7393 67500 0.0211
0.7447 68000 0.0212
0.7502 68500 0.0247
0.7557 69000 0.023
0.7612 69500 0.0261
0.7666 70000 0.0204
0.7721 70500 0.026
0.7776 71000 0.0299
0.7831 71500 0.0183
0.7885 72000 0.0228
0.7940 72500 0.0181
0.7995 73000 0.0237
0.8050 73500 0.0237
0.8105 74000 0.0158
0.8159 74500 0.0222
0.8214 75000 0.0196
0.8269 75500 0.0242
0.8324 76000 0.0218
0.8378 76500 0.0201
0.8433 77000 0.026
0.8488 77500 0.0232
0.8543 78000 0.0254
0.8597 78500 0.0218
0.8652 79000 0.0219
0.8707 79500 0.0255
0.8762 80000 0.0201
0.8816 80500 0.0301
0.8871 81000 0.0275
0.8926 81500 0.018
0.8981 82000 0.028
0.9035 82500 0.0223
0.9090 83000 0.0201
0.9145 83500 0.0299
0.9200 84000 0.0251
0.9254 84500 0.0203
0.9309 85000 0.0209
0.9364 85500 0.0236
0.9419 86000 0.0191
0.9474 86500 0.0168
0.9528 87000 0.017
0.9583 87500 0.0201
0.9638 88000 0.0171
0.9693 88500 0.0217
0.9747 89000 0.0208
0.9802 89500 0.0157
0.9857 90000 0.0218
0.9912 90500 0.021
0.9966 91000 0.0159
1.0021 91500 0.0189
1.0076 92000 0.0182
1.0131 92500 0.0206
1.0185 93000 0.0179
1.0240 93500 0.0168
1.0295 94000 0.019
1.0350 94500 0.0173
1.0404 95000 0.0172
1.0459 95500 0.0187
1.0514 96000 0.0199
1.0569 96500 0.0202
1.0624 97000 0.0198
1.0678 97500 0.0157
1.0733 98000 0.0178
1.0788 98500 0.0147
1.0843 99000 0.0152
1.0897 99500 0.0152
1.0952 100000 0.0126
1.1007 100500 0.0115
1.1062 101000 0.0122
1.1116 101500 0.0097
1.1171 102000 0.0149
1.1226 102500 0.0151
1.1281 103000 0.0134
1.1335 103500 0.0157
1.1390 104000 0.0141
1.1445 104500 0.0139
1.1500 105000 0.0149
1.1554 105500 0.0103
1.1609 106000 0.0138
1.1664 106500 0.0116
1.1719 107000 0.0146
1.1773 107500 0.0168
1.1828 108000 0.0166
1.1883 108500 0.0136
1.1938 109000 0.0103
1.1993 109500 0.0128
1.2047 110000 0.0112
1.2102 110500 0.0103
1.2157 111000 0.0133
1.2212 111500 0.0118
1.2266 112000 0.009
1.2321 112500 0.0151
1.2376 113000 0.0146
1.2431 113500 0.0143
1.2485 114000 0.01
1.2540 114500 0.0147
1.2595 115000 0.011
1.2650 115500 0.0121
1.2704 116000 0.0117
1.2759 116500 0.0151
1.2814 117000 0.0143
1.2869 117500 0.0163
1.2923 118000 0.0135
1.2978 118500 0.0118
1.3033 119000 0.0129
1.3088 119500 0.0062
1.3142 120000 0.0127
1.3197 120500 0.014
1.3252 121000 0.0131
1.3307 121500 0.0162
1.3362 122000 0.0107
1.3416 122500 0.0125
1.3471 123000 0.0136
1.3526 123500 0.0112
1.3581 124000 0.0126
1.3635 124500 0.0079
1.3690 125000 0.0104
1.3745 125500 0.0137
1.3800 126000 0.0075
1.3854 126500 0.0108
1.3909 127000 0.0087
1.3964 127500 0.0138
1.4019 128000 0.0056
1.4073 128500 0.0067
1.4128 129000 0.0103
1.4183 129500 0.0102
1.4238 130000 0.0119
1.4292 130500 0.0094
1.4347 131000 0.0075
1.4402 131500 0.0146
1.4457 132000 0.0103
1.4511 132500 0.0123
1.4566 133000 0.0107
1.4621 133500 0.0071
1.4676 134000 0.0087
1.4731 134500 0.0072
1.4785 135000 0.0094
1.4840 135500 0.0083
1.4895 136000 0.0104
1.4950 136500 0.0076
1.5004 137000 0.006
1.5059 137500 0.0085
1.5114 138000 0.0061
1.5169 138500 0.0106
1.5223 139000 0.0088
1.5278 139500 0.0111
1.5333 140000 0.0094
1.5388 140500 0.0079
1.5442 141000 0.0095
1.5497 141500 0.0098
1.5552 142000 0.0139
1.5607 142500 0.0085
1.5661 143000 0.0094
1.5716 143500 0.0088
1.5771 144000 0.0092
1.5826 144500 0.0071
1.5880 145000 0.0101
1.5935 145500 0.011
1.5990 146000 0.0097
1.6045 146500 0.0071
1.6100 147000 0.0114
1.6154 147500 0.0087
1.6209 148000 0.0075
1.6264 148500 0.0039
1.6319 149000 0.0091
1.6373 149500 0.0117
1.6428 150000 0.01
1.6483 150500 0.0099
1.6538 151000 0.0069
1.6592 151500 0.0084
1.6647 152000 0.0118
1.6702 152500 0.0078
1.6757 153000 0.0067
1.6811 153500 0.0133
1.6866 154000 0.0079
1.6921 154500 0.0092
1.6976 155000 0.0069
1.7030 155500 0.008
1.7085 156000 0.0124
1.7140 156500 0.0112
1.7195 157000 0.0074
1.7249 157500 0.0091
1.7304 158000 0.0088
1.7359 158500 0.0061
1.7414 159000 0.0089
1.7469 159500 0.0082
1.7523 160000 0.0103
1.7578 160500 0.0094
1.7633 161000 0.0073
1.7688 161500 0.0116
1.7742 162000 0.0112
1.7797 162500 0.0057
1.7852 163000 0.0075
1.7907 163500 0.0062
1.7961 164000 0.0046
1.8016 164500 0.0091
1.8071 165000 0.0066
1.8126 165500 0.0051
1.8180 166000 0.0066
1.8235 166500 0.0093
1.8290 167000 0.0079
1.8345 167500 0.0067
1.8399 168000 0.007
1.8454 168500 0.0133
1.8509 169000 0.0071
1.8564 169500 0.0091
1.8619 170000 0.0067
1.8673 170500 0.0091
1.8728 171000 0.0103
1.8783 171500 0.0058
1.8838 172000 0.0116
1.8892 172500 0.0089
1.8947 173000 0.0137
1.9002 173500 0.0065
1.9057 174000 0.0098
1.9111 174500 0.0083
1.9166 175000 0.0115
1.9221 175500 0.0083
1.9276 176000 0.0084
1.9330 176500 0.0091
1.9385 177000 0.0092
1.9440 177500 0.0054
1.9495 178000 0.0049
1.9549 178500 0.0072
1.9604 179000 0.0052
1.9659 179500 0.0063
1.9714 180000 0.0107
1.9768 180500 0.0061
1.9823 181000 0.0059
1.9878 181500 0.0067
1.9933 182000 0.0078
1.9988 182500 0.007
2.0042 183000 0.0065
2.0097 183500 0.0073
2.0152 184000 0.01
2.0207 184500 0.0072
2.0261 185000 0.0055
2.0316 185500 0.0087
2.0371 186000 0.0077
2.0426 186500 0.0067
2.0480 187000 0.008
2.0535 187500 0.0074
2.0590 188000 0.0072
2.0645 188500 0.0045
2.0699 189000 0.0082
2.0754 189500 0.0042
2.0809 190000 0.0076
2.0864 190500 0.0058
2.0918 191000 0.005
2.0973 191500 0.0047
2.1028 192000 0.0045
2.1083 192500 0.0043
2.1137 193000 0.0049
2.1192 193500 0.0058
2.1247 194000 0.0081
2.1302 194500 0.0057
2.1357 195000 0.0047
2.1411 195500 0.0073
2.1466 196000 0.0056
2.1521 196500 0.006
2.1576 197000 0.0061
2.1630 197500 0.0042
2.1685 198000 0.0057
2.1740 198500 0.0055
2.1795 199000 0.0053
2.1849 199500 0.0085
2.1904 200000 0.005
2.1959 200500 0.0055
2.2014 201000 0.0032
2.2068 201500 0.0054
2.2123 202000 0.0037
2.2178 202500 0.0046
2.2233 203000 0.0029
2.2287 203500 0.0043
2.2342 204000 0.0063
2.2397 204500 0.0064
2.2452 205000 0.0046
2.2506 205500 0.0061
2.2561 206000 0.0034
2.2616 206500 0.0046
2.2671 207000 0.0059
2.2726 207500 0.0044
2.2780 208000 0.0054
2.2835 208500 0.0049
2.2890 209000 0.0096
2.2945 209500 0.0045
2.2999 210000 0.0057
2.3054 210500 0.0032
2.3109 211000 0.0031
2.3164 211500 0.0043
2.3218 212000 0.0068
2.3273 212500 0.0048
2.3328 213000 0.0042
2.3383 213500 0.0068
2.3437 214000 0.0041
2.3492 214500 0.0042
2.3547 215000 0.0051
2.3602 215500 0.0049
2.3656 216000 0.0019
2.3711 216500 0.0039
2.3766 217000 0.0068
2.3821 217500 0.0033
2.3875 218000 0.0048
2.3930 218500 0.0052
2.3985 219000 0.0063
2.4040 219500 0.003
2.4095 220000 0.0036
2.4149 220500 0.004
2.4204 221000 0.006
2.4259 221500 0.0048
2.4314 222000 0.0037
2.4368 222500 0.0034
2.4423 223000 0.0049
2.4478 223500 0.0036
2.4533 224000 0.0046
2.4587 224500 0.0039
2.4642 225000 0.0021
2.4697 225500 0.0035
2.4752 226000 0.0034
2.4806 226500 0.003
2.4861 227000 0.0032
2.4916 227500 0.005
2.4971 228000 0.0025
2.5025 228500 0.0036
2.5080 229000 0.0021
2.5135 229500 0.0025
2.5190 230000 0.0036
2.5245 230500 0.0033
2.5299 231000 0.0049
2.5354 231500 0.0044
2.5409 232000 0.0029
2.5464 232500 0.0028
2.5518 233000 0.0091
2.5573 233500 0.004
2.5628 234000 0.0036
2.5683 234500 0.0029
2.5737 235000 0.0035
2.5792 235500 0.0038
2.5847 236000 0.0028
2.5902 236500 0.0041
2.5956 237000 0.0037
2.6011 237500 0.0031
2.6066 238000 0.0036
2.6121 238500 0.0052
2.6175 239000 0.0031
2.6230 239500 0.0023
2.6285 240000 0.0043
2.6340 240500 0.0027
2.6394 241000 0.0048
2.6449 241500 0.0046
2.6504 242000 0.0038
2.6559 242500 0.0033
2.6614 243000 0.003
2.6668 243500 0.0057
2.6723 244000 0.0044
2.6778 244500 0.0058
2.6833 245000 0.003
2.6887 245500 0.0042
2.6942 246000 0.0045
2.6997 246500 0.0031
2.7052 247000 0.0021
2.7106 247500 0.0043
2.7161 248000 0.0058
2.7216 248500 0.0041
2.7271 249000 0.0038
2.7325 249500 0.0019
2.7380 250000 0.0029
2.7435 250500 0.003
2.7490 251000 0.0038
2.7544 251500 0.004
2.7599 252000 0.0049
2.7654 252500 0.0039
2.7709 253000 0.005
2.7763 253500 0.0046
2.7818 254000 0.0025
2.7873 254500 0.0044
2.7928 255000 0.0023
2.7983 255500 0.0038
2.8037 256000 0.0032
2.8092 256500 0.0021
2.8147 257000 0.0023
2.8202 257500 0.0042
2.8256 258000 0.0042
2.8311 258500 0.0053
2.8366 259000 0.0021
2.8421 259500 0.0033
2.8475 260000 0.0047
2.8530 260500 0.0048
2.8585 261000 0.0022
2.8640 261500 0.0036
2.8694 262000 0.0034
2.8749 262500 0.0029
2.8804 263000 0.0038
2.8859 263500 0.0067
2.8913 264000 0.003
2.8968 264500 0.0049
2.9023 265000 0.0027
2.9078 265500 0.004
2.9132 266000 0.0042
2.9187 266500 0.0042
2.9242 267000 0.0038
2.9297 267500 0.0029
2.9352 268000 0.0039
2.9406 268500 0.0039
2.9461 269000 0.002
2.9516 269500 0.0022
2.9571 270000 0.002
2.9625 270500 0.003
2.9680 271000 0.0019
2.9735 271500 0.0044
2.9790 272000 0.0028
2.9844 272500 0.0031
2.9899 273000 0.0025
2.9954 273500 0.0021
3.0009 274000 0.0025
3.0063 274500 0.0038
3.0118 275000 0.0045
3.0173 275500 0.002
3.0228 276000 0.0035
3.0282 276500 0.0046
3.0337 277000 0.0033
3.0392 277500 0.002
3.0447 278000 0.0036
3.0501 278500 0.0025
3.0556 279000 0.0039
3.0611 279500 0.0029
3.0666 280000 0.004
3.0721 280500 0.0023
3.0775 281000 0.0019
3.0830 281500 0.0019
3.0885 282000 0.0027
3.0940 282500 0.0014
3.0994 283000 0.0019
3.1049 283500 0.0018
3.1104 284000 0.0016
3.1159 284500 0.0017
3.1213 285000 0.0049
3.1268 285500 0.0022
3.1323 286000 0.0023
3.1378 286500 0.0016
3.1432 287000 0.002
3.1487 287500 0.0025
3.1542 288000 0.0012
3.1597 288500 0.0021
3.1651 289000 0.0017
3.1706 289500 0.0019
3.1761 290000 0.0019
3.1816 290500 0.0042
3.1871 291000 0.0027
3.1925 291500 0.0011
3.1980 292000 0.002
3.2035 292500 0.0021
3.2090 293000 0.0015
3.2144 293500 0.0017
3.2199 294000 0.002
3.2254 294500 0.0012
3.2309 295000 0.0017
3.2363 295500 0.0029
3.2418 296000 0.0019
3.2473 296500 0.0017
3.2528 297000 0.0019
3.2582 297500 0.0012
3.2637 298000 0.0024
3.2692 298500 0.0017
3.2747 299000 0.0022
3.2801 299500 0.002
3.2856 300000 0.0028
3.2911 300500 0.0036
3.2966 301000 0.0015
3.3020 301500 0.0024
3.3075 302000 0.0015
3.3130 302500 0.0012
3.3185 303000 0.0022
3.3240 303500 0.0015
3.3294 304000 0.0023
3.3349 304500 0.0017
3.3404 305000 0.0021
3.3459 305500 0.0017
3.3513 306000 0.0015
3.3568 306500 0.0023
3.3623 307000 0.0014
3.3678 307500 0.0019
3.3732 308000 0.0017
3.3787 308500 0.0027
3.3842 309000 0.0016
3.3897 309500 0.0019
3.3951 310000 0.0037
3.4006 310500 0.0016
3.4061 311000 0.0012
3.4116 311500 0.0024
3.4170 312000 0.0016
3.4225 312500 0.0022
3.4280 313000 0.0015
3.4335 313500 0.0017
3.4389 314000 0.0015
3.4444 314500 0.0018
3.4499 315000 0.0015
3.4554 315500 0.0019
3.4609 316000 0.0009
3.4663 316500 0.001
3.4718 317000 0.001
3.4773 317500 0.0023
3.4828 318000 0.0012
3.4882 318500 0.0012
3.4937 319000 0.0011
3.4992 319500 0.0008
3.5047 320000 0.0018
3.5101 320500 0.0009
3.5156 321000 0.0016
3.5211 321500 0.0012
3.5266 322000 0.0015
3.5320 322500 0.0024
3.5375 323000 0.0016
3.5430 323500 0.0014
3.5485 324000 0.0014
3.5539 324500 0.0047
3.5594 325000 0.0013
3.5649 325500 0.0012
3.5704 326000 0.0013
3.5758 326500 0.0011
3.5813 327000 0.0011
3.5868 327500 0.0016
3.5923 328000 0.0022
3.5978 328500 0.0017
3.6032 329000 0.0012
3.6087 329500 0.002
3.6142 330000 0.0016
3.6197 330500 0.0009
3.6251 331000 0.0011
3.6306 331500 0.0019
3.6361 332000 0.0011
3.6416 332500 0.0021
3.6470 333000 0.0029
3.6525 333500 0.001
3.6580 334000 0.0016
3.6635 334500 0.0016
3.6689 335000 0.0036
3.6744 335500 0.0012
3.6799 336000 0.003
3.6854 336500 0.0014
3.6908 337000 0.0018
3.6963 337500 0.001
3.7018 338000 0.001
3.7073 338500 0.0016
3.7127 339000 0.0025
3.7182 339500 0.001
3.7237 340000 0.0018
3.7292 340500 0.0015
3.7347 341000 0.001
3.7401 341500 0.0009
3.7456 342000 0.0013
3.7511 342500 0.0014
3.7566 343000 0.0013
3.7620 343500 0.0011
3.7675 344000 0.0026
3.7730 344500 0.0014
3.7785 345000 0.0021
3.7839 345500 0.0015
3.7894 346000 0.0013
3.7949 346500 0.0013
3.8004 347000 0.0019
3.8058 347500 0.0009
3.8113 348000 0.0009
3.8168 348500 0.0014
3.8223 349000 0.0012
3.8277 349500 0.0032
3.8332 350000 0.0015
3.8387 350500 0.0011
3.8442 351000 0.002
3.8497 351500 0.0012
3.8551 352000 0.0026
3.8606 352500 0.001
3.8661 353000 0.0018
3.8716 353500 0.0014
3.8770 354000 0.001
3.8825 354500 0.0018
3.8880 355000 0.0027
3.8935 355500 0.0027
3.8989 356000 0.0011
3.9044 356500 0.0024
3.9099 357000 0.0012
3.9154 357500 0.0018
3.9208 358000 0.0012
3.9263 358500 0.0015
3.9318 359000 0.0015
3.9373 359500 0.0018
3.9427 360000 0.0017
3.9482 360500 0.0009
3.9537 361000 0.001
3.9592 361500 0.0013
3.9646 362000 0.0008
3.9701 362500 0.0018
3.9756 363000 0.0027
3.9811 363500 0.0009
3.9866 364000 0.0008
3.9920 364500 0.001
3.9975 365000 0.0009
4.0030 365500 0.0012
4.0085 366000 0.0011
4.0139 366500 0.0023
4.0194 367000 0.0023
4.0249 367500 0.0012
4.0304 368000 0.0018
4.0358 368500 0.0013
4.0413 369000 0.0009
4.0468 369500 0.0016
4.0523 370000 0.0011
4.0577 370500 0.0011
4.0632 371000 0.0009
4.0687 371500 0.0012
4.0742 372000 0.0011
4.0796 372500 0.0008
4.0851 373000 0.001
4.0906 373500 0.0008
4.0961 374000 0.0009
4.1015 374500 0.0008
4.1070 375000 0.0008
4.1125 375500 0.0008
4.1180 376000 0.0009
4.1235 376500 0.0021
4.1289 377000 0.0007
4.1344 377500 0.0014
4.1399 378000 0.0008
4.1454 378500 0.0015
4.1508 379000 0.0008
4.1563 379500 0.0008
4.1618 380000 0.0015
4.1673 380500 0.0008
4.1727 381000 0.0009
4.1782 381500 0.0018
4.1837 382000 0.0013
4.1892 382500 0.0012
4.1946 383000 0.0008
4.2001 383500 0.0008
4.2056 384000 0.0008
4.2111 384500 0.0008
4.2165 385000 0.001
4.2220 385500 0.0008
4.2275 386000 0.0008
4.2330 386500 0.0009
4.2384 387000 0.0008
4.2439 387500 0.0008
4.2494 388000 0.0011
4.2549 388500 0.0009
4.2604 389000 0.0007
4.2658 389500 0.001
4.2713 390000 0.0007
4.2768 390500 0.0011
4.2823 391000 0.0007
4.2877 391500 0.0019
4.2932 392000 0.0009
4.2987 392500 0.0011
4.3042 393000 0.0008
4.3096 393500 0.0006
4.3151 394000 0.0009
4.3206 394500 0.001
4.3261 395000 0.0007
4.3315 395500 0.0011
4.3370 396000 0.0008
4.3425 396500 0.0007
4.3480 397000 0.0007
4.3534 397500 0.0007
4.3589 398000 0.001
4.3644 398500 0.0008
4.3699 399000 0.001
4.3753 399500 0.0014
4.3808 400000 0.0006
4.3863 400500 0.0006
4.3918 401000 0.001
4.3973 401500 0.002
4.4027 402000 0.0006
4.4082 402500 0.0007
4.4137 403000 0.001
4.4192 403500 0.0008
4.4246 404000 0.0008
4.4301 404500 0.0009
4.4356 405000 0.0005
4.4411 405500 0.0008
4.4465 406000 0.0008
4.4520 406500 0.0007
4.4575 407000 0.0006
4.4630 407500 0.0006
4.4684 408000 0.0006
4.4739 408500 0.0006
4.4794 409000 0.0009
4.4849 409500 0.0007
4.4903 410000 0.0009
4.4958 410500 0.0006
4.5013 411000 0.0007
4.5068 411500 0.0006
4.5122 412000 0.0007
4.5177 412500 0.0006
4.5232 413000 0.0008
4.5287 413500 0.0007
4.5342 414000 0.0013
4.5396 414500 0.0006
4.5451 415000 0.0009
4.5506 415500 0.0015
4.5561 416000 0.0014
4.5615 416500 0.0007
4.5670 417000 0.0007
4.5725 417500 0.0008
4.5780 418000 0.0008
4.5834 418500 0.0007
4.5889 419000 0.0006
4.5944 419500 0.0008
4.5999 420000 0.0008
4.6053 420500 0.0006
4.6108 421000 0.001
4.6163 421500 0.0005
4.6218 422000 0.0007
4.6272 422500 0.0006
4.6327 423000 0.0007
4.6382 423500 0.0009
4.6437 424000 0.0014
4.6492 424500 0.0008
4.6546 425000 0.0006
4.6601 425500 0.0006
4.6656 426000 0.0016
4.6711 426500 0.0006
4.6765 427000 0.0006
4.6820 427500 0.0012
4.6875 428000 0.0007
4.6930 428500 0.0009
4.6984 429000 0.0006
4.7039 429500 0.0005
4.7094 430000 0.0007
4.7149 430500 0.0007
4.7203 431000 0.0006
4.7258 431500 0.0006
4.7313 432000 0.0006
4.7368 432500 0.0006
4.7422 433000 0.0006
4.7477 433500 0.0006
4.7532 434000 0.0006
4.7587 434500 0.0006
4.7641 435000 0.0006
4.7696 435500 0.0018
4.7751 436000 0.0009
4.7806 436500 0.0007
4.7861 437000 0.0007
4.7915 437500 0.0005
4.7970 438000 0.0009
4.8025 438500 0.0013
4.8080 439000 0.0007
4.8134 439500 0.0006
4.8189 440000 0.0007
4.8244 440500 0.001
4.8299 441000 0.0019
4.8353 441500 0.0006
4.8408 442000 0.0006
4.8463 442500 0.0009
4.8518 443000 0.0006
4.8572 443500 0.001
4.8627 444000 0.0011
4.8682 444500 0.0007
4.8737 445000 0.0007
4.8791 445500 0.0007
4.8846 446000 0.0018
4.8901 446500 0.0007
4.8956 447000 0.0012
4.9010 447500 0.0007
4.9065 448000 0.0009
4.9120 448500 0.0007
4.9175 449000 0.001
4.9230 449500 0.0007
4.9284 450000 0.0007
4.9339 450500 0.0007
4.9394 451000 0.0011
4.9449 451500 0.0005
4.9503 452000 0.0007
4.9558 452500 0.0006
4.9613 453000 0.0009
4.9668 453500 0.0008
4.9722 454000 0.0015
4.9777 454500 0.0008
4.9832 455000 0.0006
4.9887 455500 0.0006
4.9941 456000 0.0007
4.9996 456500 0.0006

Framework Versions

  • Python: 3.12.2
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.3
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
3
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sarwin/rp-embed-max

Finetuned
(3)
this model