SentenceTransformer based on nreimers/MiniLM-L6-H384-uncased
This is a sentence-transformers model finetuned from nreimers/MiniLM-L6-H384-uncased. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nreimers/MiniLM-L6-H384-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Summarizing the Evidence on the International Trade in Illegal Wildlife',
'The global trade in illegal wildlife is a multi-billion dollar industry that threatens biodiversity and acts as a potential avenue for invasive species and disease spread. Despite the broad-sweeping implications of illegal wildlife sales, scientists have yet to describe the scope and scale of the trade. Here, we provide the most thorough and current description of the illegal wildlife trade using 12 years of seizure records compiled by TRAFFIC, the wildlife trade monitoring network. These records comprise 967 seizures including massive quantities of ivory, tiger skins, live reptiles, and other endangered wildlife and wildlife products. Most seizures originate in Southeast Asia, a recently identified hotspot for future emerging infectious diseases. To date, regulation and enforcement have been insufficient to effectively control the global trade in illegal wildlife at national and international scales. Effective control will require a multi-pronged approach including community-scale education and empowering local people to value wildlife, coordinated international regulation, and a greater allocation of national resources to on-the-ground enforcement.',
'This paper proposes a method to represent classifiers or learned regression functions using an OWL ontology. Also proposed are methods for finding an appropriate learned function to answer a simple query. The ontology standardizes variable names and dependence properties, so that feature values can be given by users or found on the semantic web.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 730,454 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 5 tokens
- mean: 15.55 tokens
- max: 41 tokens
- min: 21 tokens
- mean: 195.91 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 A parallel algorithm for constructing independent spanning trees in twisted cubes
A long-standing conjecture mentions that a kk-connected graph GG admits kk independent spanning trees (ISTs for short) rooted at an arbitrary node of GG. An nn-dimensional twisted cube, denoted by TQnTQn, is a variation of hypercube with connectivity nn and has many features superior to those of hypercube. Yang (2010) first proposed an algorithm to construct nn edge-disjoint spanning trees in TQnTQn for any odd integer n⩾3n⩾3 and showed that half of them are ISTs. At a later stage, Wang et al. (2012) inferred that the above conjecture in affirmative for TQnTQn by providing an O(NlogN)O(NlogN) time algorithm to construct nn ISTs, where N=2nN=2n is the number of nodes in TQnTQn. However, this algorithm is executed in a recursive fashion and thus is hard to be parallelized. In this paper, we revisit the problem of constructing ISTs in twisted cubes and present a non-recursive algorithm. Our approach can be fully parallelized to make the use of all nodes of TQnTQn as processors for computation in such a way that each node can determine its parent in all spanning trees directly by referring its address and tree indices in O(logN)O(logN) time.
A Novel Method for Separating and Locating Multiple Partial Discharge Sources in a Substation
To separate and locate multi-partial discharge (PD) sources in a substation, the use of spectrum differences of ultra-high frequency signals radiated from various sources as characteristic parameters has been previously reported. However, the separation success rate was poor when signal-to-noise ratio was low, and the localization result was a coordinate on two-dimensional plane. In this paper, a novel method is proposed to improve the separation rate and the localization accuracy. A directional measuring platform is built using two directional antennas. The time delay (TD) of the signals captured by the antennas is calculated, and TD sequences are obtained by rotating the platform at different angles. The sequences are separated with the TD distribution feature, and the directions of the multi-PD sources are calculated. The PD sources are located by directions using the error probability method. To verify the method, a simulated model with three PD sources was established by XFdtd. Simulation results show that the separation rate is increased from 71% to 95% compared with the previous method, and an accurate three-dimensional localization result was obtained. A field test with two PD sources was carried out, and the sources were separated and located accurately by the proposed method.
Every ternary permutation constraint satisfaction problem parameterized above average has a kernel with a quadratic number of variables
A ternary Permutation-CSP is specified by a subset @P of the symmetric group S"3. An instance of such a problem consists of a set of variables V and a multiset of constraints, which are ordered triples of distinct variables of V. The objective is to find a linear ordering @a of V that maximizes the number of triples whose rearrangement (under @a) follows a permutation in @P. We prove that every ternary Permutation-CSP parameterized above average has a kernel with a quadratic number of variables.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0055 | 500 | 1.6701 |
0.0110 | 1000 | 0.8225 |
0.0164 | 1500 | 0.3883 |
0.0219 | 2000 | 0.2685 |
0.0274 | 2500 | 0.2349 |
0.0329 | 3000 | 0.1685 |
0.0383 | 3500 | 0.1409 |
0.0438 | 4000 | 0.1262 |
0.0493 | 4500 | 0.1195 |
0.0548 | 5000 | 0.1044 |
0.0602 | 5500 | 0.0989 |
0.0657 | 6000 | 0.0787 |
0.0712 | 6500 | 0.0895 |
0.0767 | 7000 | 0.0708 |
0.0821 | 7500 | 0.0834 |
0.0876 | 8000 | 0.0634 |
0.0931 | 8500 | 0.0643 |
0.0986 | 9000 | 0.0567 |
0.1040 | 9500 | 0.0646 |
0.1095 | 10000 | 0.0607 |
0.1150 | 10500 | 0.0564 |
0.1205 | 11000 | 0.068 |
0.1259 | 11500 | 0.0536 |
0.1314 | 12000 | 0.0594 |
0.1369 | 12500 | 0.057 |
0.1424 | 13000 | 0.0555 |
0.1479 | 13500 | 0.0485 |
0.1533 | 14000 | 0.0528 |
0.1588 | 14500 | 0.0478 |
0.1643 | 15000 | 0.0586 |
0.1698 | 15500 | 0.0539 |
0.1752 | 16000 | 0.0432 |
0.1807 | 16500 | 0.0542 |
0.1862 | 17000 | 0.0536 |
0.1917 | 17500 | 0.0492 |
0.1971 | 18000 | 0.0427 |
0.2026 | 18500 | 0.0489 |
0.2081 | 19000 | 0.0502 |
0.2136 | 19500 | 0.0432 |
0.2190 | 20000 | 0.0459 |
0.2245 | 20500 | 0.0376 |
0.2300 | 21000 | 0.0489 |
0.2355 | 21500 | 0.0515 |
0.2409 | 22000 | 0.0429 |
0.2464 | 22500 | 0.0417 |
0.2519 | 23000 | 0.0478 |
0.2574 | 23500 | 0.0359 |
0.2628 | 24000 | 0.0452 |
0.2683 | 24500 | 0.0443 |
0.2738 | 25000 | 0.0409 |
0.2793 | 25500 | 0.0421 |
0.2848 | 26000 | 0.0393 |
0.2902 | 26500 | 0.0409 |
0.2957 | 27000 | 0.032 |
0.3012 | 27500 | 0.0468 |
0.3067 | 28000 | 0.0285 |
0.3121 | 28500 | 0.0311 |
0.3176 | 29000 | 0.0304 |
0.3231 | 29500 | 0.0349 |
0.3286 | 30000 | 0.0352 |
0.3340 | 30500 | 0.0367 |
0.3395 | 31000 | 0.0385 |
0.3450 | 31500 | 0.0325 |
0.3505 | 32000 | 0.0302 |
0.3559 | 32500 | 0.0393 |
0.3614 | 33000 | 0.032 |
0.3669 | 33500 | 0.0263 |
0.3724 | 34000 | 0.0343 |
0.3778 | 34500 | 0.0349 |
0.3833 | 35000 | 0.0282 |
0.3888 | 35500 | 0.034 |
0.3943 | 36000 | 0.0376 |
0.3998 | 36500 | 0.0265 |
0.4052 | 37000 | 0.0267 |
0.4107 | 37500 | 0.0241 |
0.4162 | 38000 | 0.033 |
0.4217 | 38500 | 0.0323 |
0.4271 | 39000 | 0.0278 |
0.4326 | 39500 | 0.025 |
0.4381 | 40000 | 0.0363 |
0.4436 | 40500 | 0.0312 |
0.4490 | 41000 | 0.0307 |
0.4545 | 41500 | 0.0305 |
0.4600 | 42000 | 0.028 |
0.4655 | 42500 | 0.0279 |
0.4709 | 43000 | 0.0265 |
0.4764 | 43500 | 0.0262 |
0.4819 | 44000 | 0.0308 |
0.4874 | 44500 | 0.0282 |
0.4928 | 45000 | 0.0243 |
0.4983 | 45500 | 0.0236 |
0.5038 | 46000 | 0.02 |
0.5093 | 46500 | 0.0254 |
0.5147 | 47000 | 0.0275 |
0.5202 | 47500 | 0.0309 |
0.5257 | 48000 | 0.031 |
0.5312 | 48500 | 0.0271 |
0.5367 | 49000 | 0.0218 |
0.5421 | 49500 | 0.0249 |
0.5476 | 50000 | 0.0285 |
0.5531 | 50500 | 0.03 |
0.5586 | 51000 | 0.0284 |
0.5640 | 51500 | 0.0258 |
0.5695 | 52000 | 0.0228 |
0.5750 | 52500 | 0.0305 |
0.5805 | 53000 | 0.0234 |
0.5859 | 53500 | 0.0209 |
0.5914 | 54000 | 0.0341 |
0.5969 | 54500 | 0.0269 |
0.6024 | 55000 | 0.0267 |
0.6078 | 55500 | 0.0245 |
0.6133 | 56000 | 0.0263 |
0.6188 | 56500 | 0.0195 |
0.6243 | 57000 | 0.0209 |
0.6297 | 57500 | 0.0313 |
0.6352 | 58000 | 0.0247 |
0.6407 | 58500 | 0.0285 |
0.6462 | 59000 | 0.0301 |
0.6516 | 59500 | 0.0227 |
0.6571 | 60000 | 0.0235 |
0.6626 | 60500 | 0.0272 |
0.6681 | 61000 | 0.025 |
0.6736 | 61500 | 0.0276 |
0.6790 | 62000 | 0.0289 |
0.6845 | 62500 | 0.0232 |
0.6900 | 63000 | 0.0258 |
0.6955 | 63500 | 0.0254 |
0.7009 | 64000 | 0.0205 |
0.7064 | 64500 | 0.0216 |
0.7119 | 65000 | 0.0304 |
0.7174 | 65500 | 0.0234 |
0.7228 | 66000 | 0.0233 |
0.7283 | 66500 | 0.0239 |
0.7338 | 67000 | 0.0166 |
0.7393 | 67500 | 0.0211 |
0.7447 | 68000 | 0.0212 |
0.7502 | 68500 | 0.0247 |
0.7557 | 69000 | 0.023 |
0.7612 | 69500 | 0.0261 |
0.7666 | 70000 | 0.0204 |
0.7721 | 70500 | 0.026 |
0.7776 | 71000 | 0.0299 |
0.7831 | 71500 | 0.0183 |
0.7885 | 72000 | 0.0228 |
0.7940 | 72500 | 0.0181 |
0.7995 | 73000 | 0.0237 |
0.8050 | 73500 | 0.0237 |
0.8105 | 74000 | 0.0158 |
0.8159 | 74500 | 0.0222 |
0.8214 | 75000 | 0.0196 |
0.8269 | 75500 | 0.0242 |
0.8324 | 76000 | 0.0218 |
0.8378 | 76500 | 0.0201 |
0.8433 | 77000 | 0.026 |
0.8488 | 77500 | 0.0232 |
0.8543 | 78000 | 0.0254 |
0.8597 | 78500 | 0.0218 |
0.8652 | 79000 | 0.0219 |
0.8707 | 79500 | 0.0255 |
0.8762 | 80000 | 0.0201 |
0.8816 | 80500 | 0.0301 |
0.8871 | 81000 | 0.0275 |
0.8926 | 81500 | 0.018 |
0.8981 | 82000 | 0.028 |
0.9035 | 82500 | 0.0223 |
0.9090 | 83000 | 0.0201 |
0.9145 | 83500 | 0.0299 |
0.9200 | 84000 | 0.0251 |
0.9254 | 84500 | 0.0203 |
0.9309 | 85000 | 0.0209 |
0.9364 | 85500 | 0.0236 |
0.9419 | 86000 | 0.0191 |
0.9474 | 86500 | 0.0168 |
0.9528 | 87000 | 0.017 |
0.9583 | 87500 | 0.0201 |
0.9638 | 88000 | 0.0171 |
0.9693 | 88500 | 0.0217 |
0.9747 | 89000 | 0.0208 |
0.9802 | 89500 | 0.0157 |
0.9857 | 90000 | 0.0218 |
0.9912 | 90500 | 0.021 |
0.9966 | 91000 | 0.0159 |
1.0021 | 91500 | 0.0189 |
1.0076 | 92000 | 0.0182 |
1.0131 | 92500 | 0.0206 |
1.0185 | 93000 | 0.0179 |
1.0240 | 93500 | 0.0168 |
1.0295 | 94000 | 0.019 |
1.0350 | 94500 | 0.0173 |
1.0404 | 95000 | 0.0172 |
1.0459 | 95500 | 0.0187 |
1.0514 | 96000 | 0.0199 |
1.0569 | 96500 | 0.0202 |
1.0624 | 97000 | 0.0198 |
1.0678 | 97500 | 0.0157 |
1.0733 | 98000 | 0.0178 |
1.0788 | 98500 | 0.0147 |
1.0843 | 99000 | 0.0152 |
1.0897 | 99500 | 0.0152 |
1.0952 | 100000 | 0.0126 |
1.1007 | 100500 | 0.0115 |
1.1062 | 101000 | 0.0122 |
1.1116 | 101500 | 0.0097 |
1.1171 | 102000 | 0.0149 |
1.1226 | 102500 | 0.0151 |
1.1281 | 103000 | 0.0134 |
1.1335 | 103500 | 0.0157 |
1.1390 | 104000 | 0.0141 |
1.1445 | 104500 | 0.0139 |
1.1500 | 105000 | 0.0149 |
1.1554 | 105500 | 0.0103 |
1.1609 | 106000 | 0.0138 |
1.1664 | 106500 | 0.0116 |
1.1719 | 107000 | 0.0146 |
1.1773 | 107500 | 0.0168 |
1.1828 | 108000 | 0.0166 |
1.1883 | 108500 | 0.0136 |
1.1938 | 109000 | 0.0103 |
1.1993 | 109500 | 0.0128 |
1.2047 | 110000 | 0.0112 |
1.2102 | 110500 | 0.0103 |
1.2157 | 111000 | 0.0133 |
1.2212 | 111500 | 0.0118 |
1.2266 | 112000 | 0.009 |
1.2321 | 112500 | 0.0151 |
1.2376 | 113000 | 0.0146 |
1.2431 | 113500 | 0.0143 |
1.2485 | 114000 | 0.01 |
1.2540 | 114500 | 0.0147 |
1.2595 | 115000 | 0.011 |
1.2650 | 115500 | 0.0121 |
1.2704 | 116000 | 0.0117 |
1.2759 | 116500 | 0.0151 |
1.2814 | 117000 | 0.0143 |
1.2869 | 117500 | 0.0163 |
1.2923 | 118000 | 0.0135 |
1.2978 | 118500 | 0.0118 |
1.3033 | 119000 | 0.0129 |
1.3088 | 119500 | 0.0062 |
1.3142 | 120000 | 0.0127 |
1.3197 | 120500 | 0.014 |
1.3252 | 121000 | 0.0131 |
1.3307 | 121500 | 0.0162 |
1.3362 | 122000 | 0.0107 |
1.3416 | 122500 | 0.0125 |
1.3471 | 123000 | 0.0136 |
1.3526 | 123500 | 0.0112 |
1.3581 | 124000 | 0.0126 |
1.3635 | 124500 | 0.0079 |
1.3690 | 125000 | 0.0104 |
1.3745 | 125500 | 0.0137 |
1.3800 | 126000 | 0.0075 |
1.3854 | 126500 | 0.0108 |
1.3909 | 127000 | 0.0087 |
1.3964 | 127500 | 0.0138 |
1.4019 | 128000 | 0.0056 |
1.4073 | 128500 | 0.0067 |
1.4128 | 129000 | 0.0103 |
1.4183 | 129500 | 0.0102 |
1.4238 | 130000 | 0.0119 |
1.4292 | 130500 | 0.0094 |
1.4347 | 131000 | 0.0075 |
1.4402 | 131500 | 0.0146 |
1.4457 | 132000 | 0.0103 |
1.4511 | 132500 | 0.0123 |
1.4566 | 133000 | 0.0107 |
1.4621 | 133500 | 0.0071 |
1.4676 | 134000 | 0.0087 |
1.4731 | 134500 | 0.0072 |
1.4785 | 135000 | 0.0094 |
1.4840 | 135500 | 0.0083 |
1.4895 | 136000 | 0.0104 |
1.4950 | 136500 | 0.0076 |
1.5004 | 137000 | 0.006 |
1.5059 | 137500 | 0.0085 |
1.5114 | 138000 | 0.0061 |
1.5169 | 138500 | 0.0106 |
1.5223 | 139000 | 0.0088 |
1.5278 | 139500 | 0.0111 |
1.5333 | 140000 | 0.0094 |
1.5388 | 140500 | 0.0079 |
1.5442 | 141000 | 0.0095 |
1.5497 | 141500 | 0.0098 |
1.5552 | 142000 | 0.0139 |
1.5607 | 142500 | 0.0085 |
1.5661 | 143000 | 0.0094 |
1.5716 | 143500 | 0.0088 |
1.5771 | 144000 | 0.0092 |
1.5826 | 144500 | 0.0071 |
1.5880 | 145000 | 0.0101 |
1.5935 | 145500 | 0.011 |
1.5990 | 146000 | 0.0097 |
1.6045 | 146500 | 0.0071 |
1.6100 | 147000 | 0.0114 |
1.6154 | 147500 | 0.0087 |
1.6209 | 148000 | 0.0075 |
1.6264 | 148500 | 0.0039 |
1.6319 | 149000 | 0.0091 |
1.6373 | 149500 | 0.0117 |
1.6428 | 150000 | 0.01 |
1.6483 | 150500 | 0.0099 |
1.6538 | 151000 | 0.0069 |
1.6592 | 151500 | 0.0084 |
1.6647 | 152000 | 0.0118 |
1.6702 | 152500 | 0.0078 |
1.6757 | 153000 | 0.0067 |
1.6811 | 153500 | 0.0133 |
1.6866 | 154000 | 0.0079 |
1.6921 | 154500 | 0.0092 |
1.6976 | 155000 | 0.0069 |
1.7030 | 155500 | 0.008 |
1.7085 | 156000 | 0.0124 |
1.7140 | 156500 | 0.0112 |
1.7195 | 157000 | 0.0074 |
1.7249 | 157500 | 0.0091 |
1.7304 | 158000 | 0.0088 |
1.7359 | 158500 | 0.0061 |
1.7414 | 159000 | 0.0089 |
1.7469 | 159500 | 0.0082 |
1.7523 | 160000 | 0.0103 |
1.7578 | 160500 | 0.0094 |
1.7633 | 161000 | 0.0073 |
1.7688 | 161500 | 0.0116 |
1.7742 | 162000 | 0.0112 |
1.7797 | 162500 | 0.0057 |
1.7852 | 163000 | 0.0075 |
1.7907 | 163500 | 0.0062 |
1.7961 | 164000 | 0.0046 |
1.8016 | 164500 | 0.0091 |
1.8071 | 165000 | 0.0066 |
1.8126 | 165500 | 0.0051 |
1.8180 | 166000 | 0.0066 |
1.8235 | 166500 | 0.0093 |
1.8290 | 167000 | 0.0079 |
1.8345 | 167500 | 0.0067 |
1.8399 | 168000 | 0.007 |
1.8454 | 168500 | 0.0133 |
1.8509 | 169000 | 0.0071 |
1.8564 | 169500 | 0.0091 |
1.8619 | 170000 | 0.0067 |
1.8673 | 170500 | 0.0091 |
1.8728 | 171000 | 0.0103 |
1.8783 | 171500 | 0.0058 |
1.8838 | 172000 | 0.0116 |
1.8892 | 172500 | 0.0089 |
1.8947 | 173000 | 0.0137 |
1.9002 | 173500 | 0.0065 |
1.9057 | 174000 | 0.0098 |
1.9111 | 174500 | 0.0083 |
1.9166 | 175000 | 0.0115 |
1.9221 | 175500 | 0.0083 |
1.9276 | 176000 | 0.0084 |
1.9330 | 176500 | 0.0091 |
1.9385 | 177000 | 0.0092 |
1.9440 | 177500 | 0.0054 |
1.9495 | 178000 | 0.0049 |
1.9549 | 178500 | 0.0072 |
1.9604 | 179000 | 0.0052 |
1.9659 | 179500 | 0.0063 |
1.9714 | 180000 | 0.0107 |
1.9768 | 180500 | 0.0061 |
1.9823 | 181000 | 0.0059 |
1.9878 | 181500 | 0.0067 |
1.9933 | 182000 | 0.0078 |
1.9988 | 182500 | 0.007 |
2.0042 | 183000 | 0.0065 |
2.0097 | 183500 | 0.0073 |
2.0152 | 184000 | 0.01 |
2.0207 | 184500 | 0.0072 |
2.0261 | 185000 | 0.0055 |
2.0316 | 185500 | 0.0087 |
2.0371 | 186000 | 0.0077 |
2.0426 | 186500 | 0.0067 |
2.0480 | 187000 | 0.008 |
2.0535 | 187500 | 0.0074 |
2.0590 | 188000 | 0.0072 |
2.0645 | 188500 | 0.0045 |
2.0699 | 189000 | 0.0082 |
2.0754 | 189500 | 0.0042 |
2.0809 | 190000 | 0.0076 |
2.0864 | 190500 | 0.0058 |
2.0918 | 191000 | 0.005 |
2.0973 | 191500 | 0.0047 |
2.1028 | 192000 | 0.0045 |
2.1083 | 192500 | 0.0043 |
2.1137 | 193000 | 0.0049 |
2.1192 | 193500 | 0.0058 |
2.1247 | 194000 | 0.0081 |
2.1302 | 194500 | 0.0057 |
2.1357 | 195000 | 0.0047 |
2.1411 | 195500 | 0.0073 |
2.1466 | 196000 | 0.0056 |
2.1521 | 196500 | 0.006 |
2.1576 | 197000 | 0.0061 |
2.1630 | 197500 | 0.0042 |
2.1685 | 198000 | 0.0057 |
2.1740 | 198500 | 0.0055 |
2.1795 | 199000 | 0.0053 |
2.1849 | 199500 | 0.0085 |
2.1904 | 200000 | 0.005 |
2.1959 | 200500 | 0.0055 |
2.2014 | 201000 | 0.0032 |
2.2068 | 201500 | 0.0054 |
2.2123 | 202000 | 0.0037 |
2.2178 | 202500 | 0.0046 |
2.2233 | 203000 | 0.0029 |
2.2287 | 203500 | 0.0043 |
2.2342 | 204000 | 0.0063 |
2.2397 | 204500 | 0.0064 |
2.2452 | 205000 | 0.0046 |
2.2506 | 205500 | 0.0061 |
2.2561 | 206000 | 0.0034 |
2.2616 | 206500 | 0.0046 |
2.2671 | 207000 | 0.0059 |
2.2726 | 207500 | 0.0044 |
2.2780 | 208000 | 0.0054 |
2.2835 | 208500 | 0.0049 |
2.2890 | 209000 | 0.0096 |
2.2945 | 209500 | 0.0045 |
2.2999 | 210000 | 0.0057 |
2.3054 | 210500 | 0.0032 |
2.3109 | 211000 | 0.0031 |
2.3164 | 211500 | 0.0043 |
2.3218 | 212000 | 0.0068 |
2.3273 | 212500 | 0.0048 |
2.3328 | 213000 | 0.0042 |
2.3383 | 213500 | 0.0068 |
2.3437 | 214000 | 0.0041 |
2.3492 | 214500 | 0.0042 |
2.3547 | 215000 | 0.0051 |
2.3602 | 215500 | 0.0049 |
2.3656 | 216000 | 0.0019 |
2.3711 | 216500 | 0.0039 |
2.3766 | 217000 | 0.0068 |
2.3821 | 217500 | 0.0033 |
2.3875 | 218000 | 0.0048 |
2.3930 | 218500 | 0.0052 |
2.3985 | 219000 | 0.0063 |
2.4040 | 219500 | 0.003 |
2.4095 | 220000 | 0.0036 |
2.4149 | 220500 | 0.004 |
2.4204 | 221000 | 0.006 |
2.4259 | 221500 | 0.0048 |
2.4314 | 222000 | 0.0037 |
2.4368 | 222500 | 0.0034 |
2.4423 | 223000 | 0.0049 |
2.4478 | 223500 | 0.0036 |
2.4533 | 224000 | 0.0046 |
2.4587 | 224500 | 0.0039 |
2.4642 | 225000 | 0.0021 |
2.4697 | 225500 | 0.0035 |
2.4752 | 226000 | 0.0034 |
2.4806 | 226500 | 0.003 |
2.4861 | 227000 | 0.0032 |
2.4916 | 227500 | 0.005 |
2.4971 | 228000 | 0.0025 |
2.5025 | 228500 | 0.0036 |
2.5080 | 229000 | 0.0021 |
2.5135 | 229500 | 0.0025 |
2.5190 | 230000 | 0.0036 |
2.5245 | 230500 | 0.0033 |
2.5299 | 231000 | 0.0049 |
2.5354 | 231500 | 0.0044 |
2.5409 | 232000 | 0.0029 |
2.5464 | 232500 | 0.0028 |
2.5518 | 233000 | 0.0091 |
2.5573 | 233500 | 0.004 |
2.5628 | 234000 | 0.0036 |
2.5683 | 234500 | 0.0029 |
2.5737 | 235000 | 0.0035 |
2.5792 | 235500 | 0.0038 |
2.5847 | 236000 | 0.0028 |
2.5902 | 236500 | 0.0041 |
2.5956 | 237000 | 0.0037 |
2.6011 | 237500 | 0.0031 |
2.6066 | 238000 | 0.0036 |
2.6121 | 238500 | 0.0052 |
2.6175 | 239000 | 0.0031 |
2.6230 | 239500 | 0.0023 |
2.6285 | 240000 | 0.0043 |
2.6340 | 240500 | 0.0027 |
2.6394 | 241000 | 0.0048 |
2.6449 | 241500 | 0.0046 |
2.6504 | 242000 | 0.0038 |
2.6559 | 242500 | 0.0033 |
2.6614 | 243000 | 0.003 |
2.6668 | 243500 | 0.0057 |
2.6723 | 244000 | 0.0044 |
2.6778 | 244500 | 0.0058 |
2.6833 | 245000 | 0.003 |
2.6887 | 245500 | 0.0042 |
2.6942 | 246000 | 0.0045 |
2.6997 | 246500 | 0.0031 |
2.7052 | 247000 | 0.0021 |
2.7106 | 247500 | 0.0043 |
2.7161 | 248000 | 0.0058 |
2.7216 | 248500 | 0.0041 |
2.7271 | 249000 | 0.0038 |
2.7325 | 249500 | 0.0019 |
2.7380 | 250000 | 0.0029 |
2.7435 | 250500 | 0.003 |
2.7490 | 251000 | 0.0038 |
2.7544 | 251500 | 0.004 |
2.7599 | 252000 | 0.0049 |
2.7654 | 252500 | 0.0039 |
2.7709 | 253000 | 0.005 |
2.7763 | 253500 | 0.0046 |
2.7818 | 254000 | 0.0025 |
2.7873 | 254500 | 0.0044 |
2.7928 | 255000 | 0.0023 |
2.7983 | 255500 | 0.0038 |
2.8037 | 256000 | 0.0032 |
2.8092 | 256500 | 0.0021 |
2.8147 | 257000 | 0.0023 |
2.8202 | 257500 | 0.0042 |
2.8256 | 258000 | 0.0042 |
2.8311 | 258500 | 0.0053 |
2.8366 | 259000 | 0.0021 |
2.8421 | 259500 | 0.0033 |
2.8475 | 260000 | 0.0047 |
2.8530 | 260500 | 0.0048 |
2.8585 | 261000 | 0.0022 |
2.8640 | 261500 | 0.0036 |
2.8694 | 262000 | 0.0034 |
2.8749 | 262500 | 0.0029 |
2.8804 | 263000 | 0.0038 |
2.8859 | 263500 | 0.0067 |
2.8913 | 264000 | 0.003 |
2.8968 | 264500 | 0.0049 |
2.9023 | 265000 | 0.0027 |
2.9078 | 265500 | 0.004 |
2.9132 | 266000 | 0.0042 |
2.9187 | 266500 | 0.0042 |
2.9242 | 267000 | 0.0038 |
2.9297 | 267500 | 0.0029 |
2.9352 | 268000 | 0.0039 |
2.9406 | 268500 | 0.0039 |
2.9461 | 269000 | 0.002 |
2.9516 | 269500 | 0.0022 |
2.9571 | 270000 | 0.002 |
2.9625 | 270500 | 0.003 |
2.9680 | 271000 | 0.0019 |
2.9735 | 271500 | 0.0044 |
2.9790 | 272000 | 0.0028 |
2.9844 | 272500 | 0.0031 |
2.9899 | 273000 | 0.0025 |
2.9954 | 273500 | 0.0021 |
3.0009 | 274000 | 0.0025 |
3.0063 | 274500 | 0.0038 |
3.0118 | 275000 | 0.0045 |
3.0173 | 275500 | 0.002 |
3.0228 | 276000 | 0.0035 |
3.0282 | 276500 | 0.0046 |
3.0337 | 277000 | 0.0033 |
3.0392 | 277500 | 0.002 |
3.0447 | 278000 | 0.0036 |
3.0501 | 278500 | 0.0025 |
3.0556 | 279000 | 0.0039 |
3.0611 | 279500 | 0.0029 |
3.0666 | 280000 | 0.004 |
3.0721 | 280500 | 0.0023 |
3.0775 | 281000 | 0.0019 |
3.0830 | 281500 | 0.0019 |
3.0885 | 282000 | 0.0027 |
3.0940 | 282500 | 0.0014 |
3.0994 | 283000 | 0.0019 |
3.1049 | 283500 | 0.0018 |
3.1104 | 284000 | 0.0016 |
3.1159 | 284500 | 0.0017 |
3.1213 | 285000 | 0.0049 |
3.1268 | 285500 | 0.0022 |
3.1323 | 286000 | 0.0023 |
3.1378 | 286500 | 0.0016 |
3.1432 | 287000 | 0.002 |
3.1487 | 287500 | 0.0025 |
3.1542 | 288000 | 0.0012 |
3.1597 | 288500 | 0.0021 |
3.1651 | 289000 | 0.0017 |
3.1706 | 289500 | 0.0019 |
3.1761 | 290000 | 0.0019 |
3.1816 | 290500 | 0.0042 |
3.1871 | 291000 | 0.0027 |
3.1925 | 291500 | 0.0011 |
3.1980 | 292000 | 0.002 |
3.2035 | 292500 | 0.0021 |
3.2090 | 293000 | 0.0015 |
3.2144 | 293500 | 0.0017 |
3.2199 | 294000 | 0.002 |
3.2254 | 294500 | 0.0012 |
3.2309 | 295000 | 0.0017 |
3.2363 | 295500 | 0.0029 |
3.2418 | 296000 | 0.0019 |
3.2473 | 296500 | 0.0017 |
3.2528 | 297000 | 0.0019 |
3.2582 | 297500 | 0.0012 |
3.2637 | 298000 | 0.0024 |
3.2692 | 298500 | 0.0017 |
3.2747 | 299000 | 0.0022 |
3.2801 | 299500 | 0.002 |
3.2856 | 300000 | 0.0028 |
3.2911 | 300500 | 0.0036 |
3.2966 | 301000 | 0.0015 |
3.3020 | 301500 | 0.0024 |
3.3075 | 302000 | 0.0015 |
3.3130 | 302500 | 0.0012 |
3.3185 | 303000 | 0.0022 |
3.3240 | 303500 | 0.0015 |
3.3294 | 304000 | 0.0023 |
3.3349 | 304500 | 0.0017 |
3.3404 | 305000 | 0.0021 |
3.3459 | 305500 | 0.0017 |
3.3513 | 306000 | 0.0015 |
3.3568 | 306500 | 0.0023 |
3.3623 | 307000 | 0.0014 |
3.3678 | 307500 | 0.0019 |
3.3732 | 308000 | 0.0017 |
3.3787 | 308500 | 0.0027 |
3.3842 | 309000 | 0.0016 |
3.3897 | 309500 | 0.0019 |
3.3951 | 310000 | 0.0037 |
3.4006 | 310500 | 0.0016 |
3.4061 | 311000 | 0.0012 |
3.4116 | 311500 | 0.0024 |
3.4170 | 312000 | 0.0016 |
3.4225 | 312500 | 0.0022 |
3.4280 | 313000 | 0.0015 |
3.4335 | 313500 | 0.0017 |
3.4389 | 314000 | 0.0015 |
3.4444 | 314500 | 0.0018 |
3.4499 | 315000 | 0.0015 |
3.4554 | 315500 | 0.0019 |
3.4609 | 316000 | 0.0009 |
3.4663 | 316500 | 0.001 |
3.4718 | 317000 | 0.001 |
3.4773 | 317500 | 0.0023 |
3.4828 | 318000 | 0.0012 |
3.4882 | 318500 | 0.0012 |
3.4937 | 319000 | 0.0011 |
3.4992 | 319500 | 0.0008 |
3.5047 | 320000 | 0.0018 |
3.5101 | 320500 | 0.0009 |
3.5156 | 321000 | 0.0016 |
3.5211 | 321500 | 0.0012 |
3.5266 | 322000 | 0.0015 |
3.5320 | 322500 | 0.0024 |
3.5375 | 323000 | 0.0016 |
3.5430 | 323500 | 0.0014 |
3.5485 | 324000 | 0.0014 |
3.5539 | 324500 | 0.0047 |
3.5594 | 325000 | 0.0013 |
3.5649 | 325500 | 0.0012 |
3.5704 | 326000 | 0.0013 |
3.5758 | 326500 | 0.0011 |
3.5813 | 327000 | 0.0011 |
3.5868 | 327500 | 0.0016 |
3.5923 | 328000 | 0.0022 |
3.5978 | 328500 | 0.0017 |
3.6032 | 329000 | 0.0012 |
3.6087 | 329500 | 0.002 |
3.6142 | 330000 | 0.0016 |
3.6197 | 330500 | 0.0009 |
3.6251 | 331000 | 0.0011 |
3.6306 | 331500 | 0.0019 |
3.6361 | 332000 | 0.0011 |
3.6416 | 332500 | 0.0021 |
3.6470 | 333000 | 0.0029 |
3.6525 | 333500 | 0.001 |
3.6580 | 334000 | 0.0016 |
3.6635 | 334500 | 0.0016 |
3.6689 | 335000 | 0.0036 |
3.6744 | 335500 | 0.0012 |
3.6799 | 336000 | 0.003 |
3.6854 | 336500 | 0.0014 |
3.6908 | 337000 | 0.0018 |
3.6963 | 337500 | 0.001 |
3.7018 | 338000 | 0.001 |
3.7073 | 338500 | 0.0016 |
3.7127 | 339000 | 0.0025 |
3.7182 | 339500 | 0.001 |
3.7237 | 340000 | 0.0018 |
3.7292 | 340500 | 0.0015 |
3.7347 | 341000 | 0.001 |
3.7401 | 341500 | 0.0009 |
3.7456 | 342000 | 0.0013 |
3.7511 | 342500 | 0.0014 |
3.7566 | 343000 | 0.0013 |
3.7620 | 343500 | 0.0011 |
3.7675 | 344000 | 0.0026 |
3.7730 | 344500 | 0.0014 |
3.7785 | 345000 | 0.0021 |
3.7839 | 345500 | 0.0015 |
3.7894 | 346000 | 0.0013 |
3.7949 | 346500 | 0.0013 |
3.8004 | 347000 | 0.0019 |
3.8058 | 347500 | 0.0009 |
3.8113 | 348000 | 0.0009 |
3.8168 | 348500 | 0.0014 |
3.8223 | 349000 | 0.0012 |
3.8277 | 349500 | 0.0032 |
3.8332 | 350000 | 0.0015 |
3.8387 | 350500 | 0.0011 |
3.8442 | 351000 | 0.002 |
3.8497 | 351500 | 0.0012 |
3.8551 | 352000 | 0.0026 |
3.8606 | 352500 | 0.001 |
3.8661 | 353000 | 0.0018 |
3.8716 | 353500 | 0.0014 |
3.8770 | 354000 | 0.001 |
3.8825 | 354500 | 0.0018 |
3.8880 | 355000 | 0.0027 |
3.8935 | 355500 | 0.0027 |
3.8989 | 356000 | 0.0011 |
3.9044 | 356500 | 0.0024 |
3.9099 | 357000 | 0.0012 |
3.9154 | 357500 | 0.0018 |
3.9208 | 358000 | 0.0012 |
3.9263 | 358500 | 0.0015 |
3.9318 | 359000 | 0.0015 |
3.9373 | 359500 | 0.0018 |
3.9427 | 360000 | 0.0017 |
3.9482 | 360500 | 0.0009 |
3.9537 | 361000 | 0.001 |
3.9592 | 361500 | 0.0013 |
3.9646 | 362000 | 0.0008 |
3.9701 | 362500 | 0.0018 |
3.9756 | 363000 | 0.0027 |
3.9811 | 363500 | 0.0009 |
3.9866 | 364000 | 0.0008 |
3.9920 | 364500 | 0.001 |
3.9975 | 365000 | 0.0009 |
4.0030 | 365500 | 0.0012 |
4.0085 | 366000 | 0.0011 |
4.0139 | 366500 | 0.0023 |
4.0194 | 367000 | 0.0023 |
4.0249 | 367500 | 0.0012 |
4.0304 | 368000 | 0.0018 |
4.0358 | 368500 | 0.0013 |
4.0413 | 369000 | 0.0009 |
4.0468 | 369500 | 0.0016 |
4.0523 | 370000 | 0.0011 |
4.0577 | 370500 | 0.0011 |
4.0632 | 371000 | 0.0009 |
4.0687 | 371500 | 0.0012 |
4.0742 | 372000 | 0.0011 |
4.0796 | 372500 | 0.0008 |
4.0851 | 373000 | 0.001 |
4.0906 | 373500 | 0.0008 |
4.0961 | 374000 | 0.0009 |
4.1015 | 374500 | 0.0008 |
4.1070 | 375000 | 0.0008 |
4.1125 | 375500 | 0.0008 |
4.1180 | 376000 | 0.0009 |
4.1235 | 376500 | 0.0021 |
4.1289 | 377000 | 0.0007 |
4.1344 | 377500 | 0.0014 |
4.1399 | 378000 | 0.0008 |
4.1454 | 378500 | 0.0015 |
4.1508 | 379000 | 0.0008 |
4.1563 | 379500 | 0.0008 |
4.1618 | 380000 | 0.0015 |
4.1673 | 380500 | 0.0008 |
4.1727 | 381000 | 0.0009 |
4.1782 | 381500 | 0.0018 |
4.1837 | 382000 | 0.0013 |
4.1892 | 382500 | 0.0012 |
4.1946 | 383000 | 0.0008 |
4.2001 | 383500 | 0.0008 |
4.2056 | 384000 | 0.0008 |
4.2111 | 384500 | 0.0008 |
4.2165 | 385000 | 0.001 |
4.2220 | 385500 | 0.0008 |
4.2275 | 386000 | 0.0008 |
4.2330 | 386500 | 0.0009 |
4.2384 | 387000 | 0.0008 |
4.2439 | 387500 | 0.0008 |
4.2494 | 388000 | 0.0011 |
4.2549 | 388500 | 0.0009 |
4.2604 | 389000 | 0.0007 |
4.2658 | 389500 | 0.001 |
4.2713 | 390000 | 0.0007 |
4.2768 | 390500 | 0.0011 |
4.2823 | 391000 | 0.0007 |
4.2877 | 391500 | 0.0019 |
4.2932 | 392000 | 0.0009 |
4.2987 | 392500 | 0.0011 |
4.3042 | 393000 | 0.0008 |
4.3096 | 393500 | 0.0006 |
4.3151 | 394000 | 0.0009 |
4.3206 | 394500 | 0.001 |
4.3261 | 395000 | 0.0007 |
4.3315 | 395500 | 0.0011 |
4.3370 | 396000 | 0.0008 |
4.3425 | 396500 | 0.0007 |
4.3480 | 397000 | 0.0007 |
4.3534 | 397500 | 0.0007 |
4.3589 | 398000 | 0.001 |
4.3644 | 398500 | 0.0008 |
4.3699 | 399000 | 0.001 |
4.3753 | 399500 | 0.0014 |
4.3808 | 400000 | 0.0006 |
4.3863 | 400500 | 0.0006 |
4.3918 | 401000 | 0.001 |
4.3973 | 401500 | 0.002 |
4.4027 | 402000 | 0.0006 |
4.4082 | 402500 | 0.0007 |
4.4137 | 403000 | 0.001 |
4.4192 | 403500 | 0.0008 |
4.4246 | 404000 | 0.0008 |
4.4301 | 404500 | 0.0009 |
4.4356 | 405000 | 0.0005 |
4.4411 | 405500 | 0.0008 |
4.4465 | 406000 | 0.0008 |
4.4520 | 406500 | 0.0007 |
4.4575 | 407000 | 0.0006 |
4.4630 | 407500 | 0.0006 |
4.4684 | 408000 | 0.0006 |
4.4739 | 408500 | 0.0006 |
4.4794 | 409000 | 0.0009 |
4.4849 | 409500 | 0.0007 |
4.4903 | 410000 | 0.0009 |
4.4958 | 410500 | 0.0006 |
4.5013 | 411000 | 0.0007 |
4.5068 | 411500 | 0.0006 |
4.5122 | 412000 | 0.0007 |
4.5177 | 412500 | 0.0006 |
4.5232 | 413000 | 0.0008 |
4.5287 | 413500 | 0.0007 |
4.5342 | 414000 | 0.0013 |
4.5396 | 414500 | 0.0006 |
4.5451 | 415000 | 0.0009 |
4.5506 | 415500 | 0.0015 |
4.5561 | 416000 | 0.0014 |
4.5615 | 416500 | 0.0007 |
4.5670 | 417000 | 0.0007 |
4.5725 | 417500 | 0.0008 |
4.5780 | 418000 | 0.0008 |
4.5834 | 418500 | 0.0007 |
4.5889 | 419000 | 0.0006 |
4.5944 | 419500 | 0.0008 |
4.5999 | 420000 | 0.0008 |
4.6053 | 420500 | 0.0006 |
4.6108 | 421000 | 0.001 |
4.6163 | 421500 | 0.0005 |
4.6218 | 422000 | 0.0007 |
4.6272 | 422500 | 0.0006 |
4.6327 | 423000 | 0.0007 |
4.6382 | 423500 | 0.0009 |
4.6437 | 424000 | 0.0014 |
4.6492 | 424500 | 0.0008 |
4.6546 | 425000 | 0.0006 |
4.6601 | 425500 | 0.0006 |
4.6656 | 426000 | 0.0016 |
4.6711 | 426500 | 0.0006 |
4.6765 | 427000 | 0.0006 |
4.6820 | 427500 | 0.0012 |
4.6875 | 428000 | 0.0007 |
4.6930 | 428500 | 0.0009 |
4.6984 | 429000 | 0.0006 |
4.7039 | 429500 | 0.0005 |
4.7094 | 430000 | 0.0007 |
4.7149 | 430500 | 0.0007 |
4.7203 | 431000 | 0.0006 |
4.7258 | 431500 | 0.0006 |
4.7313 | 432000 | 0.0006 |
4.7368 | 432500 | 0.0006 |
4.7422 | 433000 | 0.0006 |
4.7477 | 433500 | 0.0006 |
4.7532 | 434000 | 0.0006 |
4.7587 | 434500 | 0.0006 |
4.7641 | 435000 | 0.0006 |
4.7696 | 435500 | 0.0018 |
4.7751 | 436000 | 0.0009 |
4.7806 | 436500 | 0.0007 |
4.7861 | 437000 | 0.0007 |
4.7915 | 437500 | 0.0005 |
4.7970 | 438000 | 0.0009 |
4.8025 | 438500 | 0.0013 |
4.8080 | 439000 | 0.0007 |
4.8134 | 439500 | 0.0006 |
4.8189 | 440000 | 0.0007 |
4.8244 | 440500 | 0.001 |
4.8299 | 441000 | 0.0019 |
4.8353 | 441500 | 0.0006 |
4.8408 | 442000 | 0.0006 |
4.8463 | 442500 | 0.0009 |
4.8518 | 443000 | 0.0006 |
4.8572 | 443500 | 0.001 |
4.8627 | 444000 | 0.0011 |
4.8682 | 444500 | 0.0007 |
4.8737 | 445000 | 0.0007 |
4.8791 | 445500 | 0.0007 |
4.8846 | 446000 | 0.0018 |
4.8901 | 446500 | 0.0007 |
4.8956 | 447000 | 0.0012 |
4.9010 | 447500 | 0.0007 |
4.9065 | 448000 | 0.0009 |
4.9120 | 448500 | 0.0007 |
4.9175 | 449000 | 0.001 |
4.9230 | 449500 | 0.0007 |
4.9284 | 450000 | 0.0007 |
4.9339 | 450500 | 0.0007 |
4.9394 | 451000 | 0.0011 |
4.9449 | 451500 | 0.0005 |
4.9503 | 452000 | 0.0007 |
4.9558 | 452500 | 0.0006 |
4.9613 | 453000 | 0.0009 |
4.9668 | 453500 | 0.0008 |
4.9722 | 454000 | 0.0015 |
4.9777 | 454500 | 0.0008 |
4.9832 | 455000 | 0.0006 |
4.9887 | 455500 | 0.0006 |
4.9941 | 456000 | 0.0007 |
4.9996 | 456500 | 0.0006 |
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for sarwin/rp-embed-max
Base model
nreimers/MiniLM-L6-H384-uncased