from peft import AutoPeftModelForCausalLM, LoraConfig, PeftModel
from transformers import AutoTokenizer, pipeline
import torch
base_model_name = "NousResearch/Llama-2-7b-chat-hf"
qlora_model_adapter = "sartajbhuvaji/llama-2-7b-resonate-v1"
device_map = {"": 0}
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
low_cpu_mem_usage=True,
return_dict=True,
torch_dtype=torch.float16,
device_map=device_map,
)
model = PeftModel.from_pretrained(base_model, qlora_model_adapter)
model = model.merge_and_unload()
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
prompt = "What is a large language model?"
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=2000)
result = pipe(f"<s>[INST] {prompt} [/INST]")
print(result[0]['generated_text'])
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for sartajbhuvaji/llama-2-7b-resonate-v1
Base model
NousResearch/Llama-2-7b-chat-hf